

The Daya Bay Reactor Neutrino Experiment

Daya Bay

Shaomin Chen (for the Daya Bay collaboration) Tsinghua University, Beijing, China TAUP 2007, Sendai, Japan

CP violation in lepton sector

Three-neutrino oscillation

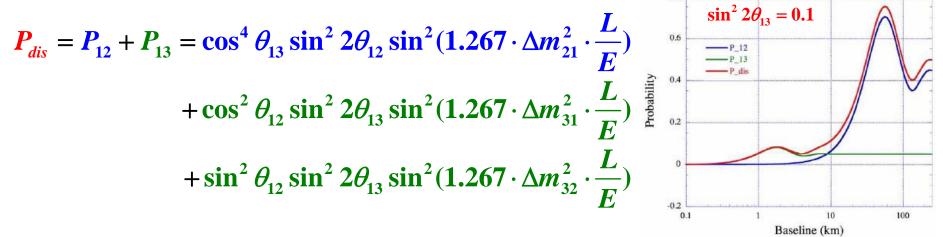
$$V_{l} = \sum_{i=1}^{3} U_{li} V_{i}$$
 ($l = e, \mu, \tau$)

To incorporate CP violation into the three-light-neutrino model Pontecorvo-Maki-Nakagawa-Sakata Matrix $(\cos \theta_{12} \quad \sin \theta_{12} \quad 0)(\cos \theta_{13} \quad 0 \quad \sin \theta_{13}e^{-i\delta})(1 \quad 0 \quad 0)(e^{i\phi_1} \quad 0)$

 $\begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{12} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} e^{i\phi_{1}} & 0 & 0 \\ 0 & e^{i\phi_{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $\sin^{2} 2\theta_{12} = 0.86^{+0.03}_{-0.04} \quad \sin^{2} 2\theta_{13} < 0.19, \ \mathsf{CL} = 90\% \quad \sin^{2} 2\theta_{23} > 0.92$

CP violation parameters: Dirac phase δ , Majorana phases ϕ_1 , ϕ_2 ϕ_1 and ϕ_2 could be manifested in $0\nu\beta\beta \implies$ extremely hard to measure! δ may be accessible through oscillation searches.

θ₁₃ is the gateway of CP violation in lepton sector!
9/14/2007 TAUP 2007, Sendai

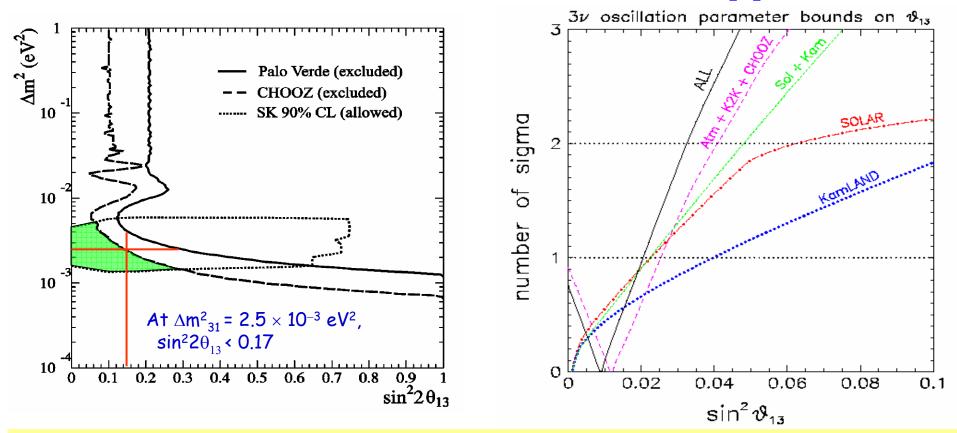

Theoretical predictions for θ_{13}

Model(s)	$\sin^2 2\theta_{13}$
Minimal SO(10)	0.13
Orbifold SO(10)	0.04
SO(10)+Flavor Symmetry	1.2×10-6-0.18
SO(10)+Texture	4×10 ⁻⁴ —0.04
Flavor symmetries	0—0.15
Textures	4×10 ⁻⁴ —0.15
3×2 see-saw	0.04
Anarchy	>0.04
Renormalization group enhancement	0.03—0.04
M-Theory model	10-4

A precise θ_{13} measurement is helpful in understanding the physics beyond the Standard Model.

How to measure θ_{13} ?

>Disappearance searches at reactors:



$\searrow \text{Appearance searches at accelerators:}$ $P_{app} \approx \sin^2 \theta_{23} \sin^2 \theta_{13} \sin^2 (1.267 \Delta m_{23}^2 \frac{L}{E}) + \cos^2 \theta_{23} \sin^2 \theta_{12} \sin^2 (1.267 \Delta m_{12}^2 \frac{L}{E})$ $-A(\rho) \cos^2 \theta_{13} \sin \theta_{13} \sin \delta$

Reactor experiments provide a clean environment to measure θ_{13} . Accelerator experiments give access to both θ_{13} and δ values.

Current knowledge on θ_{13}

Direct search (PRD 62, 072002)

A small θ_{13} (e.g. $\sin^2 2\theta_{13} < 0.02$) would make accelerator experimental searches for CP violation become a kind of "Mission: Impossible".

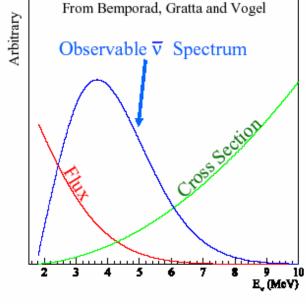
TAUP 2007, Sendai


Global fit (hep-ph/0506083)

How to reach 1% precision?

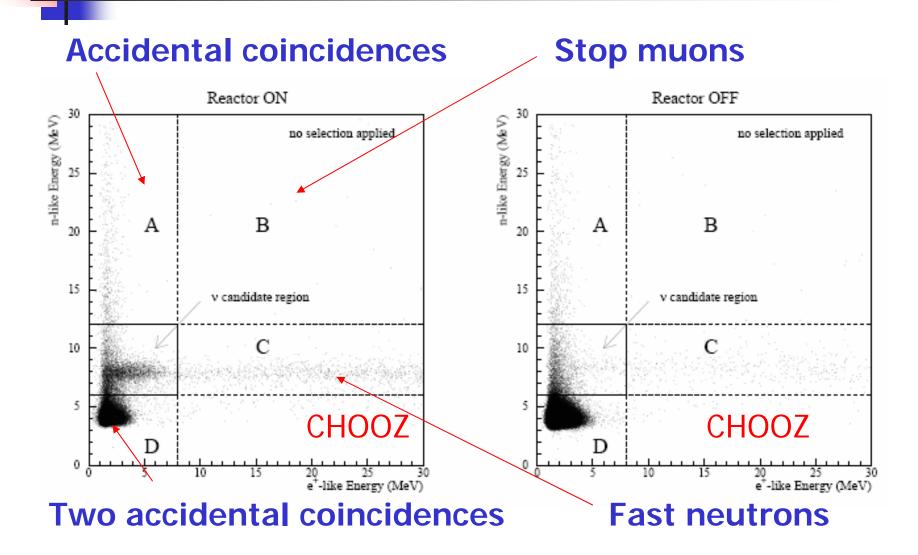
- Increase statistics:
 - Need intensive neutrino flux from powerful nuclear reactors
 - Utilize larger target mass, hence larger detectors
- > Reduce systematic uncertainties:
 - Reactor-related:
 - Optimize baseline for best sensitivity and smaller residual errors
 - Near and far detectors to minimize reactor-related errors
 - Detector-related:
 - Use "Identical" pairs of detectors to do *relative* measurement
 - Comprehensive program in calibration/monitoring of detectors
 - Interchange near and far detectors (optional)
 - Background-related
 - Go deeper to reduce cosmic-induced backgrounds
 - Enough active and passive shielding

Daya Bay nuclear power plant


- 4 reactor cores, 11.6 GW
- 2 more cores in 2011, 5.8 GW
- Mountains near by
- 55 km to Hong Kong

Signature of a signal

Reaction: $\overline{v_e} + p \rightarrow e^+ + n$ Prompt signal: $e^+ + e^- \rightarrow 2\gamma$'s $(E_{e^+} > 2m_e = 1.022 \text{MeV})$ Delayed signal: $n + Gd \rightarrow Gd' + \gamma$'s $(\sum E_{\gamma} \sim 8 \text{MeV}, \tau_0 \sim 28 \mu s)$ Delayed signal: $n + p \rightarrow d + \gamma$ $(E_{\gamma} = 2.2 \text{MeV}, \tau_0 \sim 180 \mu s)$

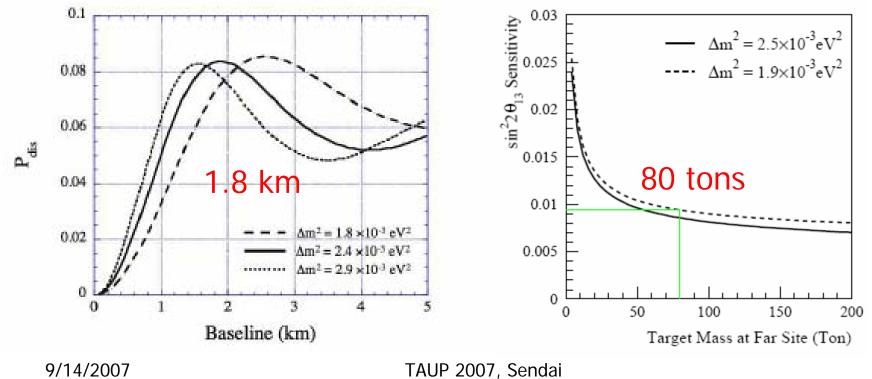

Neutrino energy: Threshold=1.8 MeV

$$E_{\overline{v}} \cong T_{e^+} + T_n + (M_n - M_p) + m_{e^+}$$

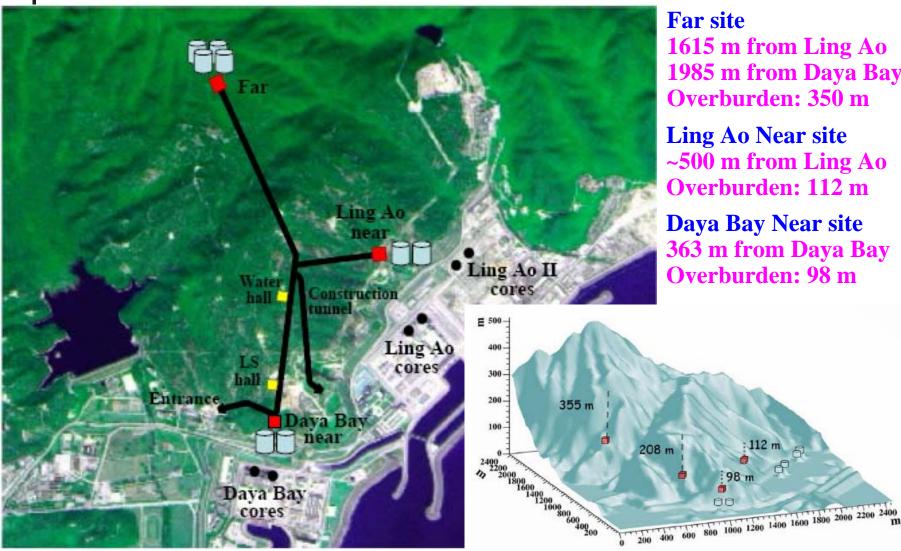
Antineutrino Interaction Rate (events/day per 20 ton module)

Daya Bay near site	960
Ling Ao near site	760
Far site	90

Origins of background


Primary design considerations

- *Identical near and far detectors* to cancel reactorrelated errors
- *Multiple modules* for reducing detector-related errors and cross checks
- *Three-zone detector modules* to reduce detectorrelated errors
- Overburden and shielding to reduce backgrounds
- *Multiple muon detectors* for reducing backgrounds and cross checks
- Movable detectors for swapping


Baseline and target mass

Input to the process:

- $-\overline{v}_e$ flux, oscillation and energy spectrum
- -Systematic uncertainties of reactors and detectors
- -Overburden, ambient background and uncertainties
- - e^+ dependent rates and spectra of cosmogenic neutrons and ⁸Li

Experimental Layout

TAUP 2007, Sendai

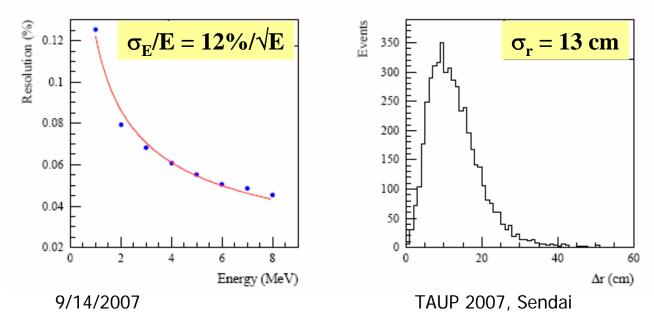
9/14/2007

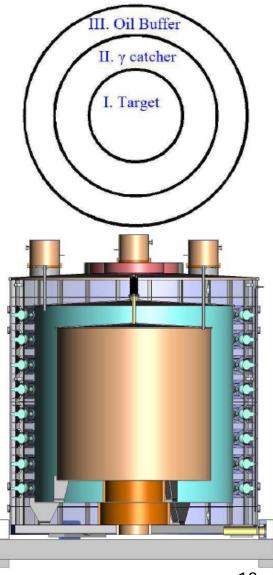
Far site 1615 m from Ling Ao 1985 m from Daya Bay Overburden: 350 m

Ling Ao Near site ~500 m from Ling Ao **Overburden: 112 m**

Daya Bay Near site 363 m from Daya Bay **Overburden: 98 m**

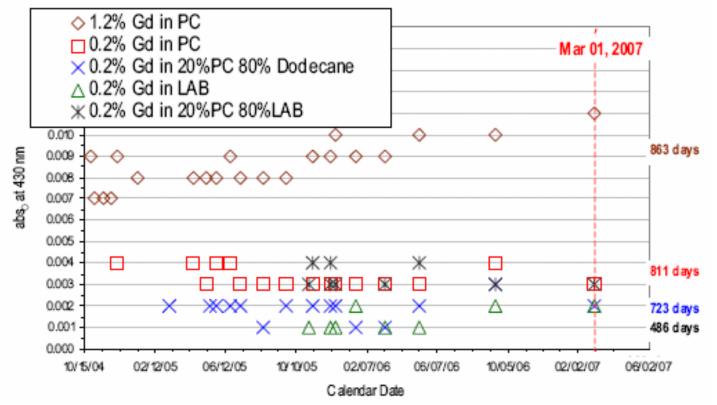
112 m


98 m


00

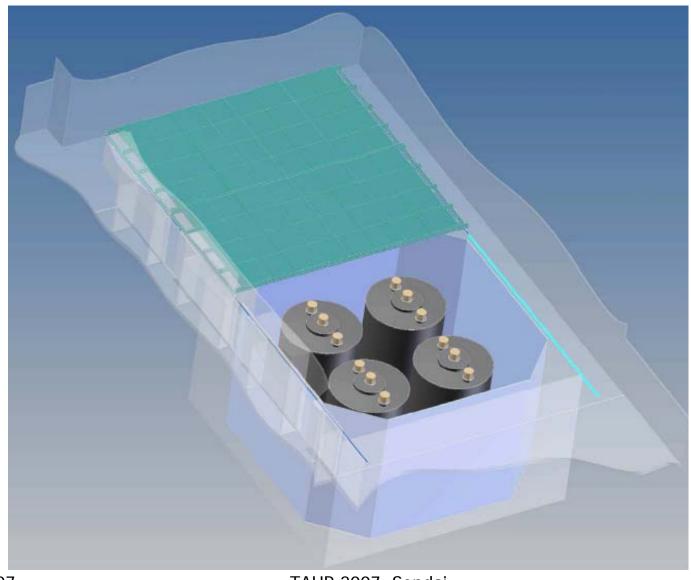
12

Anti-neutrino detector design


- **Three zones modular structure:**
 - I. Target: 20t, 1.6m Gd-loaded scintillator
 - **II.** γ-catcher: 20t, 45cm normal scintillator
 - III. Buffer shielding: 40t, 45cm oil
- **Reflector at top and bottom**
- **192 8''PMT/module**
- **PMT coverage:** 12%(with reflector)

Gd-loaded liquid scintillator

Linear Alkyl Benzene (LAB) doped with organic Gd complex (0.1% Gd mass concentration)



Gd-LS and LS mixed in storage pool and distributed to all sites

9/14/2007

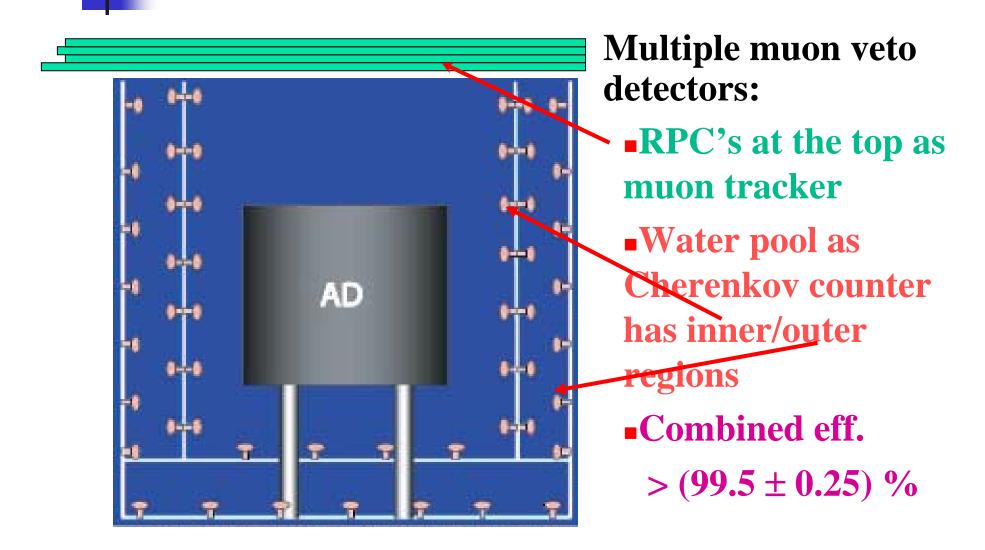
TAUP 2007, Sendai

AD modules in far site

Calibrations and monitoring

Full manual calibration procedures

Requirement Description		Proposed Solution(s)
Optical Integrity	Spatial uniformity of response, light attenuation	LED, γ sources
PMT gains	Match gains of all PMTs	LED - single p.e. matching
PMT timing	\sim 1 ns timing calibration for each PMT	Pulsed LED
Energy scale	Set scale of energy deposition	Gamma sources
H/Gd ratio	Measure relative Gd fraction	neutron source


>Automated calibration procedures

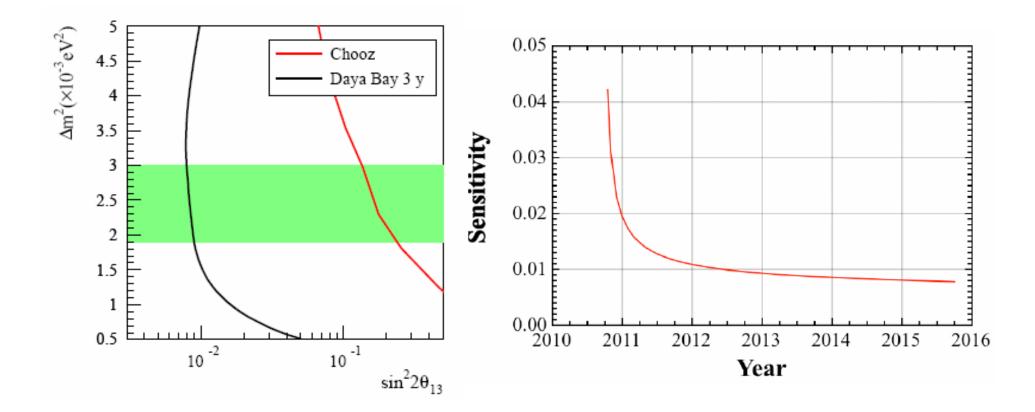
Requirement	Description	Proposed Solution(s)
Mechanical/thermal	Verify these properties are stable	Load sensors, thermometers, etc.
Optical stability	Track variations in light yield	Gamma sources, spallation products
Uniformity, light attenuation	Monitor spatial distribution of light	Gamma sources, spallation products
Detection efficiency	Monitor ϵ for neutrons and positrons	Gamma sources, neutron sources
PMT gains	Monitor 1 p.e. peaks	LED source

>And maybe more calibration procedures to come...

TAUP 2007, Sendai

Muon veto detector design

Estimated efficiencies


Source	Effici	ency
	Near	Far
Neutron detection	0.78	0.78
Positron detection	0.98	0.98
Muon Veto deadtime	0.95	0.95
Calibration runs	0.99	0.99
Reactor/experiment downtime	0.82	0.82

Neutron detection efficiency is a product of 85% Gd fraction and 93% energy cut.

Summary of uncertainties

Sources	Uncertainty
Neutrinos from	0.087% (4 cores)
Reactor	0.13% (6 cores)
Detector	0.38% (baseline)
(per module)	0.18% (goal)
Backgrounds	0.32% (Daya Bay near)
	0.22% (Ling Ao near)
	0.22% (far)
Signal statistics	0.2%

Goal to be reached at Daya Bay

The sensitivity of ≤ 0.01 for $\sin^2 2\theta_{13}$ will be reached in 2013.

TAUP 2007, Sendai

This needs a team effort!

Political Map of the World, June 1999

ROTARIA Independentiala Remark Internations of pair of speech accompany Ref. (2018) Accord (2019) Accord

Europe (3)

JINR, Dubna, Russia Kurchatov Institute, Russia Charles University, Czech Republic

North America (14) BNL, Caltech, LBNL, Iowa state Univ. Illinois Inst. Tech., Princeton, RPI, UC-Berkeley, UCLA, Univ. of Houston, Univ. of Wisconsin, Virginia Tech., Univ. of Illinois-Urbana-Champaign, George Mason Univ.

~ 160 collaborators

Asia (18)

IHEP, CIAE, Tsinghua Univ. Zhongshan Univ., Nankai Univ. Beijing Normal Univ., Nanjing Univ. Chengdu Univ. Tech., Shandong Univ. Shenzhen Univ., Hong Kong Univ. USTC, Chinese Hong Kong Univ. Taiwan Univ., Chiao Tung Univ., National United Univ., CGNPG, Dongguan Univ. Tech.

Recommendations

第250次香山科学会议简报(2005) Meeting brief for the 250th Xiangshan Scientific Meeting

• • •

2. 中微子混合角 θ_{13} 是自然界的基本参数之一, ...是一个急需解决的关键问题。 Neutrino mixing angle θ_{13} is one of the fundamental parameters in nature,...a key issue to be resolved.

3. ...条件已经基本成熟,而且实验得到了大亚湾核电站有关方面的大力支持。... 准备充分,完全有能力和实力完成这项实验。

...have mature technology and get strong support from Daya Bay Nuclear Power Plant. ... get preparations well done and have capability and strength to complete this experiment.

4. 确定 θ_{13} ...在国际上竞争激烈,...项目在年内立项是赢得国际竞争的关键。 International competition in determining θ_{13} is very vigorous,...getting the project approved promptly is a key to win the competition.

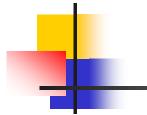
•••

This is an usual way to initiate a giant research project in China.

Roadmap

Passed DOE scientific review	Oct. 2006
CDR released (hep-ex/0701029)	Jan. 2007
Passed US CD-1 review	April 2007
Passed final nuclear safety review in China	April 2007
Received funding from Chinese agencies	April 2007
TDR to PAP released	Sept. 2007
Ground breaking ceremony	Oct. 2007
Anticipate US CD-2/3a review	Nov. 2007
Deployment of the first detector	July 2009
Data taking with final configuration	Sept. 2010

Summary

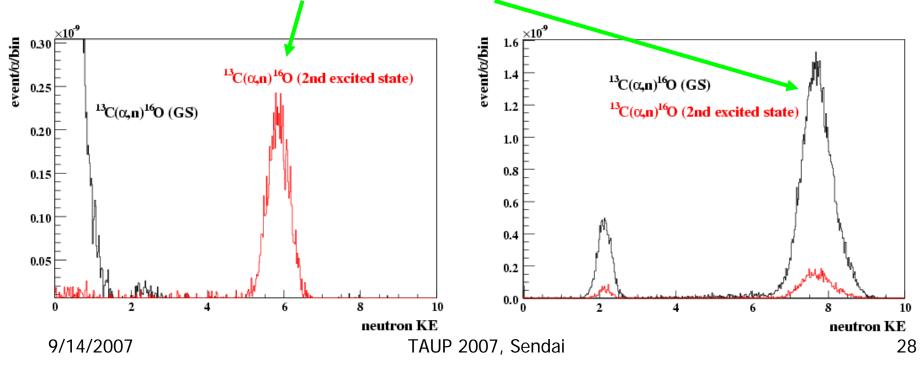

- An ultimate sensitivity of ≤ 0.01 for $\sin^2 2\theta_{13}$ is designed to be reached at the Daya Bay experiment.
- Detector design is close to complete.
- Received commitment from Chinese funding agencies.
- **US CD-2/3a Physics Review scheduled for Nov. 2007.**
- Civil construction will start from Oct. 2007, detectors will be deployed in 2009, and full operation expected in 2010.

We already know GuangDong province is a place for providing one of the most delicious foods and the cheapest "Made in China" products in the world.

We are anticipating it will also be an excellent place for us to have the most precise "Made in China" θ_{13} .

Thank you!

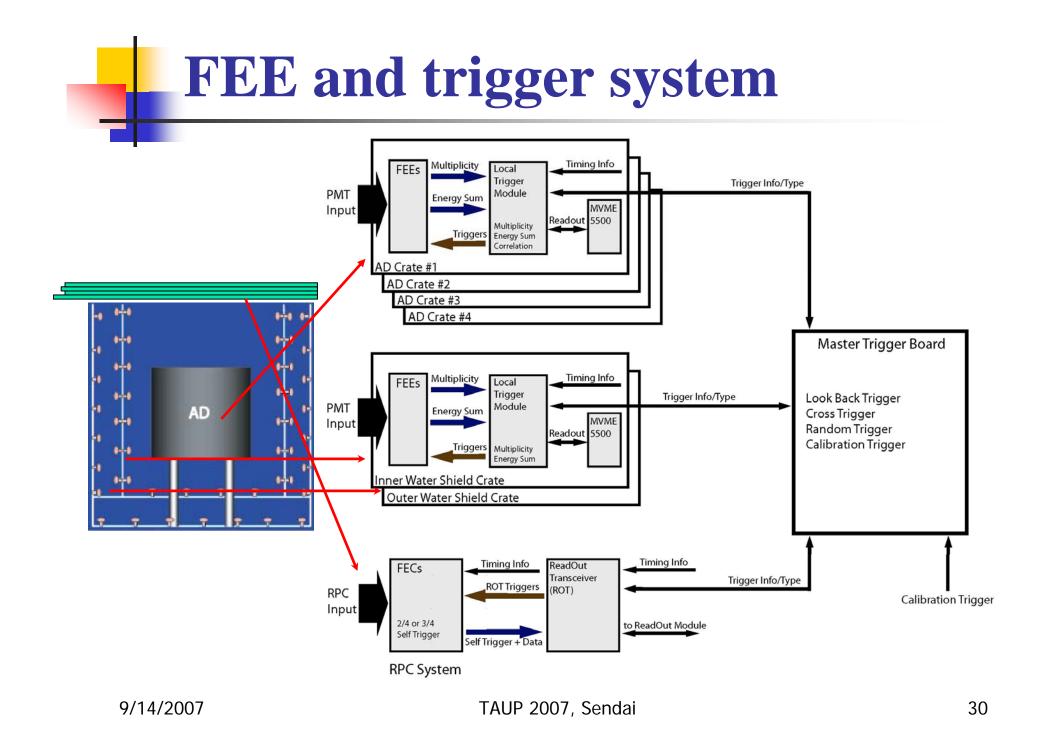
Back-up slides


Reactor neutrino spectrum

- Reactor neutrino rate and spectrum depends on:
 - The fission isotopes and their fission rate, uncorrelated ~ 1-2%
 - Fission rate depends on thermal power, uncorrelated ~ 1%
 - Energy spectrum of weak decays of fission isotopes, correlated ~ 1%
- Three ways to obtain reactor neutrino spectrum:
 - Direct measurement at near site
 - First principle calculation
 - Sum up neutrino spectra of ²³⁵U, ²³⁹Pu, ²⁴¹Pu(from measurement) and ²³⁸U(from calculation, ~ 1%)
- They all agree well within 3%

Calibrating Energy Cuts

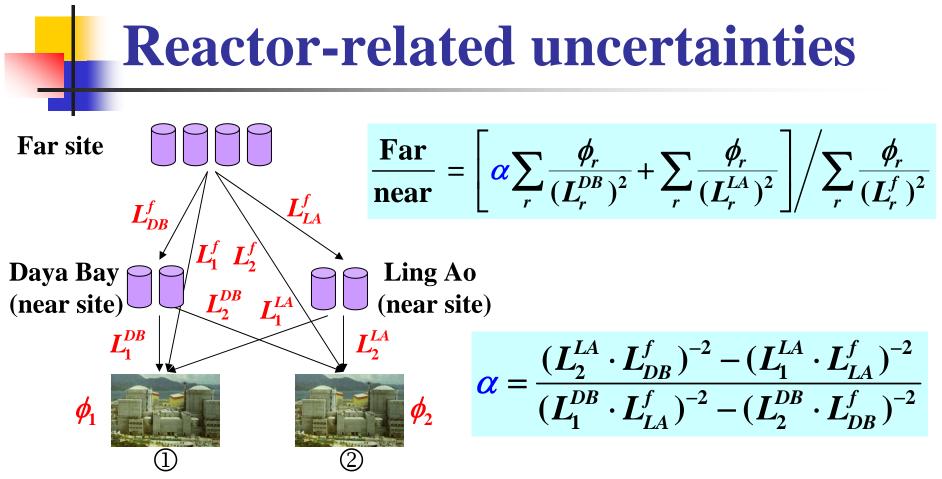
Automated deployed radioactive sources to calibrate the detector energy and position response within the entire range.


- 68 Ge (0 KE e⁺ = 2×0.511 MeV γ's)
- ⁶⁰Co (2.506 MeV γ's)
- ²³⁸Pu-¹³C (6.13 MeV γ 's, 8 MeV n-capture)

Estimated event rates

		Trigger Rates (Hz)				data rate	
Detector	Description	DB	LA	Far	Occ	Ch No.	(kB/s)
$\bar{\nu}$ module	$\operatorname{cosmic}-\mu$	36×2	22×2	1.2×4	100%	192	1408
	Rad.	50×2	50×2	50×4			
Inner water shield	Rad & noise	50	50	50	10%	123/169	31
	$\operatorname{cosmic}-\mu$	250	160	15	70%		526
Outer water shield	Rad & noise	50	50	50	10%	168/212	41
	$\operatorname{cosmic}-\mu$	250	160	15	30%		309
RPC	Rad.	2000	2000	3000	10%	32/module	217
	$\operatorname{cosmic}-\mu$	186	117	11			11
site totals	(kB/s)	1042	788	714			2544

The total event rate in each site is less than 3.5 kHz and is therefore affordable in the readout-every-hit scheme.


Sources of systematics

Detector-related

Source of uncertainty		Chooz]	Daya Bay (relative)				
		(absolute)	Baseline	Goal	Goal w/Swapping			
# protons		0.8	0.3	0.1	0.006			
Detector	Energy cuts	0.8	0.2	0.1	0.1			
Efficiency	Position cuts	0.32	0.0	0.0	0.0			
	Time cuts	0.4	0.1	0.03	0.03			
	H/Gd ratio	1.0	0.1	0.1	0.0			
	n multiplicity	0.5	0.05	0.05	0.05			
	Trigger	0	0.01	0.01	0.01			
	Live time	0	< 0.01	< 0.01	< 0.01			
Total detector-related uncertainty		1.7%	0.38%	0.18%	0.12%			

Reactor-related

Number of cores	α	σ_{ρ} (power)	$\sigma_{\rho}(\text{location})$	$\sigma_{\rho}(\text{total})$
4	0.338	0.035%	0.08%	0.087%
6	0.392	0.097%	0.08%	0.126%

Assuming 30 cm precision in core position

Number of cores	α	σ_{ρ} (power)	$\sigma_{\rho}(\text{location})$	$\sigma_{\rho}(\text{total})$
4	0.338	0.035%	0.08%	0.087%
6	0.392	0.097%	0.08%	0.126%

Background-related errors

- Uncorrelated backgrounds:
 - U/Th/K/Rn/neutron

Single gamma rate @ 0.9MeV < 50Hz

Single neutron rate < 1000/day

Correlated backgrounds:

Fast Neutrons: double coincidence

⁸He/⁹Li: neutron emitting decays

	DYB site	LA site	far site
Antineutrino rate (/day/module)	930	760	90
Natural radiation (Hz)	<50	<50	<50
Single neutron (/day/module)	18	12	1.5
β -emission isotopes	210	141	14.6
Accidental/Signal	<0.2%	<0.2%	<0.1%
Fast neutron/Signal	0.1%	0.1%	0.1%
⁸ He ⁹ Li/Signal	0.3%	0.2%	0.2%