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Physics Motivation
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Parametrize the PMNS matrix as:
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0,5 Is the gateway of CP violation in lepton sector!



Electron anti-neutrino survival probability
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Measuring 0,; Using Reactor Anti-neutrinos
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Large oscillation >50 km;
negligible <2 km

v, disappearance at

short baseline(~2 km):
unambiguous
measurement of 0,



Objective of Near Term 0,; Measurement

Previous best experimental limits from Chooz: sin?(20,,) <0.17
(Am?;,=2.5x10-3 eV, 90% c.f.)

Build an experiment to < 0.01 sensitivity to sin?(20,,)

E Increase statistics: Use powerful reactors & large target mass
B Suppress background:

@ Go deeper underground
€ High performance veto detector to MEASURE the background

B Reduce systematic uncertainties:

€ Reactor-related:
Utilize near and far detectors to minimize reactor-related errors

@ Detector-related:
- Use "ldentical” pairs of detectors to do relative measurement

- Comprehensive program in calibration/monitoring of detectors



Daya Bay Experiment Overview



Far site

1615 m from Ling Ao
1985 m from Daya
Overburden: 350 m

Mid site

873 m from Ling Ao
1156 m from Daya
Overburden: 208 m

Daya Bay: Powerful reactor by
mountains

Ling Ao Near site
4 ~500 m from Ling Ao

LA Overbur'den: 112 m
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Detection of v,

Inverse B-decay in Gd-doped liquid scintillator:
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Time, space and energy-tagged signal
—> suppress background events.
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Antineutrino Detector

Cylindrical 3-Zone Structure separated by
acrylic vessels:

|. Target: 0.1% Gd-loaded liquid
scintillator,
radius=half height= 1.55 m, 20 ton

Il. y-catcher: liquid scintillator, 42.5
cm thick

[11. Buffer shielding: mineral oll,
48.8 cm thick

With 224 PMT’s on circumference

and reflective reflectors on top and
bottom:

o 12.2%
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Gd-loaded Liquid Scintillator

F Baseline recipe: Linear Alkyl Benzene (LAB) doped with

organic Gd complex (0.1% Gd mass concentration)

E LAB (suggested by SNO+): high flashpoint, safer for

environment and health, commercially produced for detergents.
Stability of light attenuation two Gd-loaded LAB samples over 4 months
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Inverse-beta Signals

event/bin

Antineutrino Interaction Rate
(events/day per 20 ton module)

Daya Bay near site 960
Ling Ao near site 760
Far site 90

Prompt Energy Signal

Reconstructed Positron Energy Spectrum
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Statistics comparable to a single module at far site in 3 years.
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Calibrating Energy Cuts

event/c/bin
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Automated deployed radioactive sources to calibrate the detector
energy and position response within the entire range.

F %8Ge (0 KE e* = 2x0.511 MeV y’s)

E %0Co (2.506 MeV vy’s)

B 238py-13C (6.13 MeV y’s, 8
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Muon “Veto” System

Resistive plate chamber (RPC)

OQuter water sheild

Inner water shield

E Surround detectors with at least
2.5m of water, which shields the
external radioactivity and
cosmogenic background

B Water shield is divided into two
optically separated regions (with
reflective divider, 8” PMTs
mounted at the zone boundaries),
which serves as two active and
Independent muon tagger

F Augmented with a top muon
tracker: RPCs

B Combined efficiency of tracker
> 99.5% with error measured to

better than 0.25% 1



Background and Systematics
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Background = “prompt”+”delayed” signals that fake inverse-beta events

Backgrounds

Three main contributors, all can be measured:

Background type

Experimental Handle

Muon-induced fast neutrons (prompt recoil,
delayed capture) from water or rock

>99.5% parent “water” muons tagged

~1/3 parent “rock” muons tagged

Li/He (T,,= 178 msec, 3 decay w/neutron
emission, delayed capture)

Tag parent “showing’

’’muons

Accidental prompt and delay coincidences

Single rates accurately measured

B/S:
DYB site LA site Far site
Fast n / signal 0.1% 0.1% 0.1%
°Li-°He / signal 0.3% 0.2% 0.2%
Accidental/signal <0.2% <0.2% <0.1%
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Systematics Budget

Detector-related

Baseline: currently achievable relative uncertainty without R&D
expected relative uncertainty after R&D

Goal:

Swapping:

Reactor-related

can reduce relative uncertainty further

Number of cores v op(power) | o,(location) | o,(total)
4 0.338 | 0.035% 0.08% 0.087%
6 0.392 | 0.097% 0.08% 0.126%

source of uncertainty Chooz Daya Bay (reflative)
{(absolutey | Bascline | Goal | Goal w/Swapping
# protons 0.8 0.3 0.1 0.006
Detector | Energy cuts 0.8 0.2 0.1 0.1
Efficiency | Position cuts (.32 0.0 0.0 0.0
‘Tune cuis .4 0.1 (.03 .03
H/Gd ratio 1.0 0.1 0.1 0.0
n multiplicity 0.5 0.03 0.03 0.03
Trigger 0 0.01 0.01 0.01
Live time 4 < 001 < 0.01 < (.01
Total detector-related uncertainty 1.7%  C0.38% | 0.18% )] (0.12%
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Daya Bay Sensitivity
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Daya Bay Sensitivity

n

Source Uncertainty

~ : \
Reactor Power 0.087% (4 cores) “% 4.5 '1 — ChoOZ
0.13% (6 cores) @ \ Daya Bay
Detector (per module) | 0.38% (baseline) 3
0.18% (goal) X 3.
Signal Statistics 0.2% NE
B Assume backgrounds are measured £
t0<0.2%. = B
B Use rate and spectral shape. i.sE O | "D
: - =R < | o
B Input relative detector systematic error 1 |
of 0.2%. ) |
0_5 = IlII” | r IIII| I"$.I
102 | 10" ,
Milestones | sin“20,,

L. _ 90% confidence level
Summer 07 Begin civil construction

June 09 Start commissioning first two
detectors
June 10 Begin data taking with near-far

1 year of data taking = 300 days
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Backups
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Daya Bay Site

LingAo Il NPP 2.9GWx2
Under construction (2010)

-------------
- 9

Daya Bay NPP 2.9GWx2 LingAo NPP 2.9GWx2

1 GW,, generates 2 X 1020 v, per sec

Powerful reactor by mountain (horizontal tunnels are easier and

cheaper to construct)!
20



Current Knowledge of 0,

Direct search

allowed region
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Daya Bay Detector Hall Layout

Anti-neutrino
detector tanks
s Surrounded by water,
which act as a
passive shield of the
«= Natural and
. cosmogenic
" packground, as well
as active veto

system.

8 PMT's
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Reactor Related Systematic Uncertainty

For multi cores, apply a trick to deweight oversampled cores to
maximize near/far cancellation of the reactor power fluctuation.

1 1
2 2 T 2 2
. LQQLlf LQlLQf
2 2 2 2
L11L2f L12L1f

Near Near1+ Near2

— =
Far Far Far

Number of cores ! o,(power) | o,(location) | o ,(total)

4 0.338 | 0.035% 0.08% 0.087%

6 0.392 | 0.097% 0.08% 0.126%




Monitoring/Calibration Program

B Load sensors, level sensors, thermometers, flow meters, mass
flow meters to measure the mass, volume, and other physical
property of the target.

E Automated deployed LED diffuser balls to calibrate the optical
parameters of the detectors (attenuation length, reflectivity,
phototube QE, etc) accurately.

E Automated deployed radioactive sources to calibrate the detector
energy and position response within the entire range.

E 8Ge (0 KE e* = 2x0.511 MeV y7s)
E %0Co (2.506 MeV v’s)
B 238Py-13C (6.13 MeV y’s, 8 MeV n-capture)

B Using data: spallation neutrons, 1°B, Michel electrons. Uniformly
sample the entire fuducial



Detector Related Systematic Uncertainty

Number of Protons
B Mass: volume flow < 0.02%, mass flow < 0.1%
B H/C ratio: filling near/far pair detectors underground with liquid from

same batch
Energy Cuts
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Positron Energy Spectrum (MeV) ° 2 * 6_ 8 1o
Energy of Delayed Signal (MeV)
Routine monitoring with %8Ge source nails Use 6 MeV gamma from 238Pu-13C source
the positron threshold — positron efficiency to nail the neutron energy cut — neutron
< 0.05% efficiency < 0.2%
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Daya Bay Sensitivity by Year
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