

Daya Bay Reactor Neutrino Experiment — A Precise Measurement of θ_{13} in Near Future

Jianglai Liu (for the Daya Bay Collaboration) California Institute of Technology

C2CR07 Conference, Lake Tahoe, Feb. 28, 2007

Physics Motivation

Weak eigenstate ≠ mass eigenstate ⇒ Pontecorvo-Maki-Nakagawa-Sakata Matrix

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} 0.8 & 0.5 & ? \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

Parametrize the PMNS matrix as:

 θ_{13} is the gateway of CP violation in lepton sector!

Measuring θ_{13} Using Reactor Anti-neutrinos

Objective of Near Term θ_{13} Measurement

Previous best experimental limits from Chooz: $sin^2(2\theta_{13}) < 0.17$ ($\Delta m^2_{31}=2.5\times 10^{-3}$ eV, 90% c.f.)

Build an experiment to ≤ 0.01 sensitivity to $\sin^2(2\theta_{13})$

- Increase statistics: Use powerful reactors & large target mass
 Suppress background:
 - Go deeper underground
 - High performance veto detector to MEASURE the background

Reduce systematic uncertainties:

- Reactor-related:
 - Utilize near and far detectors to minimize reactor-related errors
- ♦ Detector-related:
 - Use "Identical" pairs of detectors to do *relative* measurement
 - Comprehensive program in calibration/monitoring of detectors

Daya Bay Experiment Overview

Far site 1615 m from Ling Ao 1985 m from Daya Overburden: 350 m

Mid site

873 m from Ling Ao

1156 m from Daya

Overburden: 208 m

ш 006

Daya Bay: Powerful reactor by mountains

Ling Ao Near site ~500 m from Ling Ao Overburden: 112 m

465 m

Ling Ao-II NPP (under construction) 2×2.9 GW in 2010

Filling hall

E

295 m

Daya Bay

2×2.9 GW

entrance

NPP, 2×2,9 GW Daya Bay Near site

Ling Ao

363 m from Daya Bay Overburden: 98 m

Detection of v_e

Inverse β-decay in Gd-doped liquid scintillator:

$$V_e + p \rightarrow e^+ + n$$

$$| \rightarrow + p \rightarrow D + \gamma(2.2 \text{ MeV}) \quad (t \sim 180 \,\mu \text{ s}) \quad 0.3\text{b}$$

$$\rightarrow + \text{Gd} \rightarrow \text{Gd}^* \rightarrow \text{Gd} + \gamma' \text{s}(8 \text{ MeV}) \quad (t \sim 30 \,\mu \text{ s}) \quad 50,000\text{b}$$

 $E_{\nu} \approx T_{e+} + T_n + (m_n - m_p) + m_{e+} \approx T_{e+} + 1.8 \text{ MeV}$

τ= 28 μs, <d>= 5 cm

Antineutrino Detector

Cylindrical 3-Zone Structure separated by acrylic vessels:

I. Target: 0.1% Gd-loaded liquid scintillator,

radius=half height= 1.55 m, 20 ton

II. γ-catcher: liquid scintillator, 42.5 cm thick

III. Buffer shielding: mineral oil, 48.8 cm thick

With 224 PMT's on circumference and reflective reflectors on top and bottom:

$$\frac{\sigma}{E} \sim \frac{12.2\%}{\sqrt{E(\text{MeV})}}, \ \sigma_{\text{vertex}} = 13 \text{cm}$$

Gd-loaded Liquid Scintillator

Baseline recipe: Linear Alkyl Benzene (LAB) doped with organic Gd complex (0.1% Gd mass concentration)
 LAB (suggested by SNO+): high flashpoint, safer for environment and health, commercially produced for detergents.

Stability of light attenuation two Gd-loaded LAB samples over 4 months

Inverse-beta Signals

Antineutrino Interaction Rate

(events/day per 20 ton module)

Daya Bay near site	960
Ling Ao near site	760
Far site	90

Reconstructed Positron Energy Spectrum

Prompt Energy Signal

$$\begin{split} & E_{e+}(\text{``prompt''}) \in [1,8] \text{ MeV} \\ & E_{n\text{-}cap} (\text{``delayed''}) \in [6,10] \text{ MeV} \\ & t_{delayed}\text{-}t_{prompt} \in [0.3,200] \text{ } \mu\text{s} \end{split}$$

Delayed Energy Signal

Statistics comparable to a single module at far site in 3 years. ¹⁰

reconstructed neutron (delayed) capture energy spectrum

Calibrating Energy Cuts

Automated deployed radioactive sources to calibrate the detector energy and position response within the entire range.

Muon "Veto" System

Resistive plate chamber (RPC)

Surround detectors with at least 2.5m of water, which shields the external radioactivity and cosmogenic background

• Water shield is divided into two optically separated regions (with reflective divider, 8" PMTs mounted at the zone boundaries), which serves as two active and independent muon tagger

Augmented with a top muon tracker: **RPCs**

Combined efficiency of tracker > 99.5% with error measured to better than 0.25%

Background and Systematics

Backgrounds

Background = "prompt"+"delayed" signals that fake inverse-beta events

Three main contributors, all can be measured:

Background type	Experimental Handle
Muon-induced fast neutrons (prompt recoil,	>99.5% parent "water" muons tagged
delayed capture) from water or rock	~1/3 parent "rock" muons tagged
⁹ Li/ ⁸ He (T _{1/2} = 178 msec, β decay w/neutron	Tag parent "showing" muons
emission, delayed capture)	
Accidental prompt and delay coincidences	Single rates accurately measured

B/S:

	DYB site	LA site	Far site
Fast n / signal	0.1%	0.1%	0.1%
⁹ Li- ⁸ He / signal	0.3%	0.2%	0.2%
Accidental/signal	<0.2%	<0.2%	<0.1%

Systematics Budget

Detector-related

Source of uncertainty		Chooz	Daya Bay (relative)			
		(absolute)	Baseline	Goal	Goal w/Swapping	
# protons		0.8	0.3	0.1	0.006	
Detector	Energy cuts	0.8	0.2	0.1	0.1	
Efficiency	Position cuts	0.32	0.0	0.0	0.0	
	Time cuts	0.4	0.1	0.03	0.03	
	H/Gd ratio	1.0	0.1	0.1	0.0	
	n multiplicity	0.5	0.05	0.05	0.05	
	Trigger	0	0.01	0.01	0.01	
	Live time	0	< 0.01	< 0.01	< 0.01	
Total detector-related uncertainty		1.7%	0.38%	0.18%	0.12%	

Baseline: currently achievable relative uncertainty without R&DGoal:expected relative uncertainty after R&D

Swapping: can reduce relative uncertainty further

Reactor-related

Number of cores	α	σ_{ρ} (power)	$\sigma_{\rho}(\text{location})$	$\sigma_{\rho}(\text{total})$
4	0.338	0.035%	0.08%	0.087%
6	0.392	0.097%	0.08%	0.126%

Daya Bay Sensitivity

Daya Bay Sensitivity

Source	Uncertainty		
Reactor Power	0.087% (4 cores)		
	0.13% (6 cores)		
Detector (per module)	0.38% (baseline)		
	0.18% (goal)		
Signal Statistics	0.2%		

- Assume backgrounds are measured to<0.2%.
- Use rate and spectral shape.
- Input relative detector systematic error of 0.2%.

Milestones

Summer 07 Begin civil construction June 09 Start commissioning first two detectors

June 10 Begin data taking with near-far

1 year of data taking = 300 days

Collaboration Institutes: Asia (17), US (14), Europe (3) ~130 collaborators

Backups

Daya Bay Site

1 GW_{th} generates 2 × 10²⁰ \overline{v}_{e} per sec

Powerful reactor by mountain (horizontal tunnels are easier and cheaper to construct)!

Current Knowledge of θ_{13}

Direct search

Global fit

Daya Bay Detector Hall Layout

DAYA BAY MUON SYSTEM

Reactor Related Systematic Uncertainty

For multi cores, apply a trick to **deweight oversampled** cores to maximize near/far cancellation of the reactor power fluctuation.

$$\alpha = \frac{\frac{1}{L_{22}^2 L_{1f}^2} - \frac{1}{L_{21}^2 L_{2f}^2}}{\frac{1}{L_{11}^2 L_{2f}^2} - \frac{1}{L_{12}^2 L_{1f}^2}}$$

$$\frac{\text{Near}}{\text{Far}} = \alpha \frac{\text{Near1}}{\text{Far}} + \frac{\text{Near2}}{\text{Far}}$$

Assuming 30 cm precision in core position

Number of cores	α	σ_{ρ} (power)	$\sigma_{\rho}(\text{location})$	$\sigma_{\rho}(\text{total})$
4	0.338	0.035%	0.08%	0.087%
6	0.392	0.097%	0.08%	0.126%

Monitoring/Calibration Program

Load sensors, level sensors, thermometers, flow meters, mass flow meters to measure the mass, volume, and other physical property of the target.

Automated deployed LED diffuser balls to calibrate the optical parameters of the detectors (attenuation length, reflectivity, phototube QE, etc) accurately.

Automated deployed radioactive sources to calibrate the detector energy and position response within the entire range.

⁶⁸Ge (0 KE
$$e^+ = 2 \times 0.511$$
 MeV γ 's)

- 60Co (2.506 MeV γ 's)
- ²³⁸Pu-¹³C (6.13 MeV γ 's, 8 MeV n-capture)

Using data: spallation neutrons, ¹²B, Michel electrons. Uniformly sample the entire fuducial

Detector Related Systematic Uncertainty

Number of Protons

Mass: volume flow < 0.02%, mass flow < 0.1%

H/C ratio: filling near/far pair detectors underground with liquid from same batch

Energy Cuts Arbitrary Units 320 350 300 250 200 4 5 6 2 3 7 8 150 True Energy 100 Geant Energy Reconstructed Energy 50 0.2 0.4 0.6 1.2 1.4 0.8 Positron Energy Spectrum (MeV)

Routine monitoring with 68 Ge source nails the positron threshold \rightarrow positron efficiency < 0.05%

Use 6 MeV gamma from 238 Pu- 13 C source to nail the neutron energy cut \rightarrow neutron efficiency < 0.2%

Daya Bay Sensitivity by Year

