

Daya Bay Calibration System

Energy Calibration Basics
Calibration Subsystems
Automated Source Calibration System
Calibration Plans and Simulations

Jianglai Liu Caltech

APS/DNP 06 Meeting, Nashville

Oct 28, 2006

Precise Determination of Energy

Between the near/far detector pair, require a relative

$$\frac{\delta E}{E} \le 1\%$$

Basic requirement: radioactive sources=fixed energy Response function is position-dependent: source at different places to sample the response function in entire fiducial volume

Subsystems

LED source for gain, threshold, and timing calibration

Manual source deployment system for fullvolume characterization

Automated source deployment system for routine calibration.

Use tagged cosmogenics for continuous monitoring of detector performance

Inverse-beta Energy Spectra and Sources

Prompt Energy Signal

Delayed Energy Signal

We plan three radioactive sources:

 \rightarrow e⁺ energy threshold ⁶⁸Ge, 0 KE e⁺ \rightarrow 1.022 MeV γ 's \rightarrow e⁺ energy scale • $^{60}Co \rightarrow 2.506 \text{ MeV } \gamma$'s \blacksquare Cf (or AmBe) \rightarrow n \rightarrow "delayed" capture on p (2.2 MeV γ) or Gd (8.0 MeV γ 's) \rightarrow neutron threshold and scale

Spallation neutron for Daya Bay

Muon induced neutrons thermalize and capture on Gd or H. Uniformly distributed in detector. Tagged by muon detector. Signals exactly like the inversebeta neutron signal: Delayed energy 8 MeV (n-Gd) or 2.2 MeV (n-p). So calibrating E_{vis}. Combined with position reconstruction to give the detector position response function R(x).

Automated System Hardware

3 deploy system per module
Each corresponds to one
point in horizontal cross-section
with full z axis.

Each capable of deploying four different sources.

Three Ports/Units

- Central axis
- Outer radius of central region
- Gamma catcher region

One step motor unit

•One turn table, 4 step motors.

 Computer automated DAQ using position encoder, load cell readings.

Detector Parameters and Corresponding Calibration Strategy

Parameter	Calibration Method
Light yield in central region	Source @ center
Light yield in gamma catcher	Source in gamma catcher
Attenuation in central region	Neutron center/uniform ratio or Co center/corner ratio
Attenuation in gamma catcher	Source in gamma catcher
Tank reflectivity	Early/later light yield
Dead PMTs	Source @ center
Crud at the bottom of acrylic	Source along z axis

Carefully designing calibration to decouple different parameters.9

Change of Attenuation Length in Central Region

So the attenuation length affect the detector position uniformity, light yield does NOT.

So "uniform"/"center" ratio ⇒ attenuation length. • *"uniform": spallation neutrons,* • *"center": calibration.* 10,000 neutrons each.

Similarly, can use "corner"/"center" ratio.

⁶⁰Co source, 1000 events each

Change of Attenuation Length in Gamma Catcher

Q: How to calibrate the attenuation length in the gamma catcher only?

A: put a source in the gamma catcher.

zPMT:xPMT:yPMT

Ratio of upper/lower "headon" tubes

Status Summary

We have a comprehensive plan for detector energy calibration.

Calibration system integrated in detector design.

Detail simulations of the calibration performance are ongoing.

We are building prototype for the automated source deploy system.

Goal: to achieve a 1% near/far relative energy Uncertainty.

Backups

LED Calibration of the Antineutrino Detectors

Calibration Goal: PMT gains and timing

Change of Light Yield in Gamma Catcher

Put the source close to the outer layer and look at the tubes close-by. Short distance \Rightarrow attenuation negligible.

Resulting Neutron Efficiency

