

The last unknown neutrino mixing angle 013 and the Daya Bay Experiment

David E. Jaffe (BNL) for the

Daya Bay Collaboration

CIPANP 200

θ_{13} : The Last Unknown Neutrino Mixing Angle

• U_{e3} is the gateway to CP violation in neutrino (Mass)² sector: $P(v_{\mu} \rightarrow v_{e}) - P(\bar{v}_{\mu} \rightarrow \bar{v}_{e}) \propto \sin(2\theta_{12})\sin(2\theta_{23})\cos^{2}(\theta_{13})\sin(2\theta_{13})\sin\delta$

Current Knowledge of θ_{13}

CIPANP 2006 (David E. Jaffe)

Where To Place The Detectors ?

• Since reactor \overline{v}_e are low-energy, it is a disappearance experiment:

$$P(\overline{v}_e \to \overline{v}_e) \approx 1 - \frac{\sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right)}{4E} - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right)$$

- Place near detector(s) close to reactor(s) to measure raw flux and spectrum of $\overline{v_e}$, reducing reactor-related systematic
- Position a far detector near the first oscillation maximum to get the highest sensitivity, and also be less affected by θ_{12}

Burner The Daya Bay Nuclear Power Facilities

Shiyan

12th most powerful in the world (11.6 GW)

- Top five most powerful by 2011 (17.4 GW)
- Adjacent to mountain, easy to construct tunnels to reach underground labs with sufficient overburden to suppress cosmic rays

Daya Bay NPP:

2×2.9 GW,

Ling Ao II NPP: Ling Ao NPP: $2 \times 2.9 \ \text{GW}_{\text{th}}$ $2 \times 2.9 \ \text{GW}_{\text{th}}$ Ready by 2010-2011

1 GW_{th} generates 2 × 10²⁰ \overline{v}_{e} per sec

The second second

Detecting Low-energy \overline{v}_e

• The reaction is the inverse β -decay in 0.1% Gd-doped liquid scintillator: $\overline{v}_e + p \rightarrow e^+ + n \text{ (prompt)}$

$$\begin{array}{c|c} 0.3b & \rightarrow + p \rightarrow D + \gamma(2.2 \text{ MeV}) & (\text{delayed}) \\ \hline 50,000b & \rightarrow + \text{Gd} \rightarrow \text{Gd}^{*} \\ & & \mid \rightarrow \text{Gd} + \gamma' \text{s}(8 \text{ MeV}) & (\text{delayed}) \end{array}$$

 Time- and energy-tagged signal is a good tool to suppress background events.

• Energy of
$$\overline{v}_e$$
 is given by:

$$E_{\bar{v}} \approx T_{e^+} + T_n + (m_n - m_p) + m_{e^+} \approx T_{e^+} + 1.8 \text{ MeV}$$

10-40 keV

n-capture vertex resolution ~20cm (CHOOZ)

Design of Antineutrino Detectors

20

tonnes

Gd-LS

4.2

5.7

3.0

Three-zone structure:

I. Target: 0.1% Gd-loaded liquid scintillator < II. Gamma catcher: liquid scintillator, 45cm III. Buffer shielding: mineral oil, ~45cm

thickness (cm)

Po en	ssibly with diffuse reflected as. For 200 PMT's arou	ection at ind the barr	el:				
130	$\frac{\delta}{E} \sim \frac{14\%}{\sqrt{E(\text{MeV})}}, \ \sigma_{\text{vertex}} =$	14cm gamr	na catcl	her		buffe	er
011 centage	0/8094 / 6 P1 99.96 P2 -42.01 P3 32.64		Oil buf	fer th	ickness	5	
มี 100 90		Isotopes (from PMT)	Purity (ppb)	20cm (Hz)	25cm (Hz)	30cm (Hz)	
80		²³⁸ U(>1MeV)	50	2.7	2.0	1.4	
70	-	²³² Th(>1MeV)	50	1.2	0.9	0.7	
50		⁴⁰ K(>1MeV)	10	1.8	1.3	0.9	

GCAT Eff.

Total

40cm

(Hz)

0.8

0.4

0.5

1.7

Design of Shield-Muon Veto

- Detector modules enclosed by 2 m of water to shield neutrons produced by cosmic-ray muons and gamma-rays from the surrounding rock
- Water shield also serves as a Cherenkov veto for tagging muons
- Augmented with a muon tracker: scintillator or RPCs
- Combined efficiency of Cherenkov and tracker > 99.5%

Sources of Systematic Uncertainty

- 1. Background-related uncertainties
- 2. Reactor-related uncertainties
- 3. Detector-related uncertainties

Systematic uncertainties are controlled and/or measured by use of

- overburden and active shielding,
- multiple sites with multiple identical detectors per site,
- optimized baseline,
- 3-zone detector modules,
- swapping of detectors between sites,
- calibration and monitoring

Background sources

- Natural Radioactivity: PMT glass, Rock, Radon in the air, etc
- Slow and fast neutrons produced in rock & shield by cosmic muons
- Muon-induced cosmogenic isotopes: ⁸He/⁹Li which can β -n decay
 - Cross section measured at CERN (Hagner et. al.)
 - Can be measured in-situ, even for near detectors with muon rate ~ 10 Hz:

Summary of Background

- Use a modified Palo Verde-Geant3-based MC to model response of detector
- Muon-induced background estimate uses the measured overburden, spectra from modified Gaisser parametrization & muon transport with the MUSIC

package

	Near Site	Far Site
v _e rate/day	560	80
Radioactivity (Hz)	<50	<50
Accidental B/S	<0.05%	<0.05%
Fast neutron B/S	0.14% ± 0.16%	0.08 ± 0.1%
⁸ He/ ⁹ Li B/S	0.41% ± 0.18%	0.2% ± 0.08%

Further rejection of background may be possible by vetoing $\overline{v_e}$ candidates preceded by showering muons. (KamLAND)

Reactor-related uncertainties

Uncertainty due to $\sigma_{\phi} \approx 2\%$ =uncorrelated reactor power uncertainties:

$$\sigma_{\rho} = \sqrt{\sum_{r} [\frac{1}{\rho} \frac{\partial \rho}{\partial \phi_{r}} \delta \phi_{r}]^{2}} = \sigma_{\phi} \sqrt{\sum_{r} \left[\frac{\alpha \rho_{1}(f_{1}^{r} - f_{f}^{r}) + \rho_{2}(f_{2}^{r} - f_{f}^{r})}{\alpha \rho_{1} + \rho_{2}} \right]^{2}}$$
(Fraction of events at site 1)

due to reactor r

Reactor Cores	σ_{ρ} (power)	$\sigma_{ ho}$ (core position	n) σ _ρ (Total)
4	0.035%	0.08%	0.087%
6	0.097%	0.08%	0.126%

Assume's ±30cm uncertainty in core positions

31 May 2006

CIPANP 2006 (David E. Jaffe)

Detector-related Uncertainties

Multiple, identical detectors/site

Overburden/shielding

3-zone design		Absolute neasurement	Relative measurement		
S	Source of error		Daya Bay		
			Baseline	Goal w	/Swapping
# protons	H/C ratio	0.8	0.2	0.1	→ 0
	Mass	-	0.2	0.02	→ 0.006
Detector	Energy cuts	0.8	0.2	0.05	
Efficiency	Position cuts	0.32	0.0	0.0	
	Time cuts	0.4	0.1	0.03	
	H/Gd ratio	1.0	0.01	0.01	→ 0
	n multiplicity	0.5	0.05	0.01	
	Trigger	0	0.01	0.01	
	Live time	0	< 0.01	< 0.01	
Total detector-related uncertainty		1.7%	0.36%	0.12%	→ 0.06%

Baseline: currently achievable relative uncertainty without R&D Goal: expected relative uncertainty after R&D Swapping: can reduce relative uncertainty further

Summary of Systematic Uncertainties

- Reactor-related systematic uncertainties are: 0.09% (4 cores) 0.13% (6 cores)
- Relative detector systematic uncertainties are:
 0.36% (baseline)
 0.12% (goal)
 0.06% (with swapping)
- Assume backgrounds are measured
- These are input to sensitivity calculations

Preliminary schedule

June 06 Begin civil design July 07 Begin civil construction June 08 Daya Bay near & mid halls complete Dec 08 Ling Ao near & far halls complete Oct 09 Begin Daya Bay near, mid data taking Aug 10 Begin data taking with far & near halls Mar 13 Measure $\sin^2 2\theta_{13}$ to ≤ 0.01

Full operation:

Far

(A) Two near sites + Far site

(B) Mid site + Far site

(C) Two near sites + Mid site + Far site

Provides internal checks, each with different systematic

Versatility of the Daya Bay experiment

Summary and status

- The Daya Bay reactor neutrino experiment is designed to reach a sensitivity of ≤ 0.01 for $\sin^2 2\theta_{13}$ and have the versatility to perform internal systematic checks of a $\sin^2 2\theta_{13}$ measurement.
- The Daya Bay project has been approved by the Chinese Academy of Science for 50M RMB. Other Chinese agencies are expected to contribute another ~100M RMB
- The US DOE has provided 0.8M\$ for R&D for FY06. We are working towards a US project start in FY08.
- We are seeking new collaborators
- Will complete preliminary design of detectors and detailed design of tunnels and underground facilities in 2006.
- Plan to start with the near-mid data taking in 2009, and begin full operation in 2010.

Thanks to my Daya Bay colleagues for help in preparing this presentation.