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θ13: The Last Unknown Neutrino Mixing Angle 
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• What is νe fraction of ν3?
• Ue3 is the gateway to CP violation in neutrino 

sector:

atmospheric,
accelerator

reactor,
accelerator

0νββSNO, solar SK,
KamLAND
θ12 ~ 32°θ23 = ~ 45° θ13 = ?

P(νµ → νe) - P(νµ → νe) ∝sin(2θ12)sin(2θ23)cos2(θ13)sin(2θ13)sinδˉˉ
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Current Knowledge of θ13

Fogli etal., hep-ph/0506083

Global fit

sin22θ13 < 0.11 (90% CL) 

Best fit value of ∆m2
32 = 2.4 × 10−3 eV2

sin22θ13 = 0.04

Direct search

At ∆m2
31 = 2.5 × 10−3 eV2,

sin22θ13 < 0.15

allowed region
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Where To Place The Detectors ?

P(ν e → ν e ) ≈ 1 −sin2 2θ13 sin2 ∆m31
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• Place near detector(s) close to 
reactor(s) to measure raw flux
and spectrum of ⎯νe, reducing
reactor-related systematic

• Position a far detector near 
the first oscillation maximum 
to get the highest sensitivity,   
and also be less affected by θ12

• Since reactor ⎯νe are low-energy, it is a disappearance experiment:
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Sin22θ13 = 0.1
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31 = 2.5 x 10-3 eV2

Sin22θ12 = 0.825
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21 = 8.2 x 10-5 eV2
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Ling Ao II NPP:
2 × 2.9 GWth

Ready by 2010-2011

Ling Ao NPP:
2 × 2.9 GWth

Daya Bay NPP:
2 × 2.9 GWth

1 GWth generates 2 × 1020 ⎯νe per sec

55 km

45 km 

The Daya Bay Nuclear Power Facilities

• 12th most powerful in the world (11.6 GW)
• Top five most powerful by 2011 (17.4 GW)
• Adjacent to mountain, easy to construct

tunnels to reach underground labs with
sufficient overburden to suppress cosmic rays
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Daya Bay
NPP

Ling Ao
NPP

Ling Ao-ll NPP
(under const.)

Empty detectors: moved to underground 
halls through access tunnel.
Filled detectors: swapped between 
underground halls via horizontal tunnels.

Total tunnel length: ~2700 m
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Daya Bay Near
360 m from Daya Bay
Overburden: 97 m

Ling Ao Near
500 m from Ling Ao
Overburden: 98 m

Far site
1600 m from Ling Ao
2000 m from Daya
Overburden: 350 m

Mid site
~1000 m from Daya
Overburden: 208 m

Entrance 
portal



Detecting Low-energy ⎯νe

⎯νe + p → e+ + n (prompt)

→ + p → D + γ(2.2 MeV)    (delayed)

→ + Gd → Gd*
→ Gd + γ’s(8 MeV)  (delayed)

• Time- and energy-tagged signal is a good
tool to suppress background events.

• Energy of ⎯νe is given by:

E⎯ν ≈ Te+ + Tn + (mn - mp) + m e+ ≈ Te+ + 1.8 MeV
10-40 keV

• The reaction is the inverse β-decay in 0.1% Gd-doped liquid scintillator:

Eν (MeV)
2 3 4 5 6 7 8 9 10

A
rb

itr
ar

y

Flux Cros
s S

ect
ion

Observable ν Spectrum

From Bemporad, Gratta and Vogel

0.3b

50,000b

• n-capture vertex resolution ~20cm (CHOOZ)
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Design of Antineutrino Detectors
• Three-zone structure:

I.   Target: 0.1% Gd-loaded liquid scintillator
II.  Gamma catcher: liquid scintillator, 45cm
III. Buffer shielding: mineral oil, ~45cm

• Possibly with diffuse reflection at
ends. For 200 PMT’s around the barrel:

vertex
14%~ ,   14cm
(MeV)

=
E E
σ σ

Isotopes
(from PMT)

Purity

(ppb)

20cm

(Hz)
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5.7

50
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25cm 
(Hz)

30cm

(Hz)

40cm

(Hz)

238U(>1MeV) 2.0 1.4 0.8

232Th(>1MeV) 0.9 0.7 0.4

40K(>1MeV) 1.3 0.9 0.5

Total 4.2 3.0 1.7

Oil buffer thickness

buffer

20 
tonnes 
Gd-LS

gamma catcher
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Design of Shield-Muon Veto

2 m of
water

Neutron background vs
thickness of water
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a conceptual design

• Detector modules enclosed by 2 m of water to shield neutrons 
produced by cosmic-ray muons and gamma-rays from the 
surrounding rock

• Water shield also serves as a Cherenkov veto for tagging muons
• Augmented with a muon tracker: scintillator or RPCs
• Combined efficiency of Cherenkov and tracker > 99.5%
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Sources of Systematic Uncertainty
1. Background-related uncertainties
2. Reactor-related uncertainties
3. Detector-related uncertainties

Systematic uncertainties are controlled and/or measured
by use of

• overburden and active shielding, 
• multiple sites with multiple identical detectors per site,
• optimized baseline, 
• 3-zone detector modules, 
• swapping of detectors between sites, 
• calibration and monitoring
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Background sources
• Natural Radioactivity: PMT glass, Rock, Radon in the air, etc

• Slow and fast neutrons produced in rock & shield by cosmic muons

• Muon-induced cosmogenic isotopes: 8He/9Li which can β-n decay
- Cross section measured at CERN (Hagner et. al.)

- Can be measured in-situ, even for near detectors with muon rate ~ 10 Hz:

4 near detectors

Half-life of 9Li = 0.18s

< 0.3% bkgd/signal
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β-n decay of 9Li mimics signal

(sin22θ13=0.01 )

Visible e+ energy (MeV)



Summary of Background

Near Site Far Site

⎯νe rate/day 560 80
Radioactivity  (Hz) <50 <50

8He/9Li B/S 0.41% ± 0.18% 0.2% ± 0.08%

Accidental  B/S <0.05% <0.05%
Fast neutron B/S 0.14% ± 0.16% 0.08 ± 0.1%

• Use a modified Palo Verde-Geant3-based MC to model 
response of detector

• Muon-induced background estimate uses the measured 
overburden, spectra from modified Gaisser
parametrization & muon transport with the MUSIC 
package

Further rejection of background may be possible by vetoing 
⎯νe candidates preceded by showering muons. (KamLAND)
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Reactor-related uncertainties
Define ρ=near/far event ratio:
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Baseline from reactor r 
to near site 2

Flux at unit distance
from reactor r

Calculable  parameter  based on
power, baseline, livetime

Uncertainty due to σΦ ≈2%=uncorrelated reactor power uncertainties:

Reactor Cores σρ(power) σρ (core position) σρ(Total)
4 0.035% 0.08% 0.087%
6 0.097% 0.08% 0.126%

Fraction of events at site 1
due to reactor r

Assumes ±30cm uncertainty in core positions



Detector-related Uncertainties

Baseline: currently achievable relative uncertainty without R&D
Goal: expected relative uncertainty after R&D

Absolute
measurement

Relative
measurement

→ 0
→ 0.006

→ 0.06%

w/Swapping

→ 0

Swapping: can reduce relative uncertainty further

3-zone design

Multiple, identical detectors/site Overburden/shielding
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Summary of Systematic Uncertainties

• Reactor-related systematic uncertainties are:
0.09% (4 cores)
0.13% (6 cores)

• Relative detector systematic uncertainties are:
0.36% (baseline)
0.12% (goal)
0.06% (with swapping)

• Assume backgrounds are measured

• These are input to sensitivity calculations
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90% confidence level90% confidence level

2 near + far (3 years)

near (40t) + m
id (40 t)

1 year
Near-mid

•• Use rate and spectral shapeUse rate and spectral shape
•• input relative detector input relative detector 

systematic systematic error of 0.2%error of 0.2%

Sensitivity of Daya Bay 

Daya Bay
near hall
(40 t) 

Tunnel 
entrance

Ling Ao
near hall
(40 t)

Far hall
(80 t)

sin22θ13 = 0.02

sin22θ13 = 0.1

68%CL bands of a 
∆m312 measurement
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Versatility of 
the Daya Bay 
experiment

Rapid deployment:
-Daya Bay near site + mid site
- 0.7% reactor systematic error

Full operation:
(A) Two near sites + Far site
(B) Mid site + Far site
(C) Two near sites + Mid site + Far site

Provides internal checks, each 
with different systematic

Preliminary schedule
June 06 Begin civil design
July 07 Begin civil construction
June 08 Daya Bay near & mid halls complete
Dec 08 Ling Ao near & far halls complete
Oct 09 Begin Daya Bay near, mid data taking
Aug 10 Begin data taking with far & near halls
Mar 13 Measure sin22θ13 to ≤ 0.01



Summary and status
• The Daya Bay reactor neutrino experiment is designed to 

reach a sensitivity of ≤ 0.01 for sin22θ13 and have the 
versatility to perform internal systematic checks of a 
sin22θ13 measurement. 

• The Daya Bay project has been approved by the Chinese 
Academy of Science for 50M RMB. Other Chinese agencies 
are expected to contribute another ~100M RMB

• The US DOE has provided 0.8M$ for R&D for FY06. We 
are working towards a US project start in FY08.

• We are seeking new collaborators
• Will complete preliminary design of detectors and detailed 

design of tunnels and underground facilities in 2006. 
• Plan to start with the near-mid data taking in 2009, and 

begin full operation in 2010.
Thanks to my Daya Bay colleagues for help in preparing this presentation.
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