

The Daya Bay Calibration System — Key to θ_{13}

Jianglai Liu Caltech, for the Daya Bay Collaboration

APS/DNP 08 Meeting, Oakland

Oct 26, 2008

Calibration of Detector Efficiency

- Geometry (edge effects, spill in/out) cancel in ratio for identical detectors
- Positron detection

energy cuts at 1, 8 MeV

Neutron detection

energy threshold at 6 MeV

delayed timing cuts $[0.3, 200] \mu s$

Gd/H cancels in near/far ratio when filling in pair

Calibration Program

Routine (weekly) deployment of sources

Radioactive sources = fixed energy, LED light source = fixed time

Tagged cosmogenic background (free) = fixed energy & time

Prompt Energy Signal (Simulation)

Delayed Energy Signal (Simulation)

- Stopped positron signal using ⁶⁸Ge source (2 x 0.511 MeV) \Rightarrow e⁺ threshold
- Neutron (n source, spallation) capture signal
 - 2.2 MeV \Rightarrow e⁺ energy scale
 - 8 MeV \Rightarrow neutron threshold at 6 MeV

Major Issue: Neutron Threshold

Simulation: 0.2% on detector efficiency \Leftrightarrow knowing positron threshold to 2% (easy), relative neutron threshold to 1% (more difficult)

Strategy: use position reconstructed spallation n-Gd capture signals (full fiducial volume) + weekly deployment of neutron sources (3 vertical axes)

	<u>Near</u> /day/module	<u>Far</u> /day/module
Spallation Neutrons	13500	1100
σ/E=0.5% per pixel	1 day	10 days

⁶⁸Ge Source: Stopped e⁺

${}^{68}\text{Ge} \xrightarrow{\text{EC}} {}^{68}\text{Ga} \xrightarrow{\beta^+} {}^{68}\text{Zn}$

Rate: 100 Bq ($T_{1/2} = 270$ days)

Simulation:

E_{vis} (MeV)

- 3% of positrons hitting the stainless steel capsule. Others annihilated in plastic
- Net energy escaped via Bremsstrahlung ~ 0.17%

Neutron Source

• Attenuate alpha energy with Au foil to <4.5 MeV to suppress ¹⁶O in excited state (6.15 MeV gamma)

<0.1% background contamination at the far site

Design of Calibration Unit

Tested in lab >20-year worth of deployment!

9

Dragging Along Teflon Bellows

<u>Status</u>

- Mechanical/electronics design finished. Performed many prototype tests
- Fabrication in progress. On schedule to ship 3 units to Daya Bay Dec. 08

Turn-table plate out-of the shop

Assembly area at Caltech

Backups

Experimental Principle of Daya Bay

