

1

Precise measurement of reactor antineutrino oscillations at Daya Bay

Vít Vorobel (on behalf of the Daya Bay Collaboration) Charles University in Prague

HEP2007 Conference, Manchester, Jul. 19, 2007

The Daya Bay Collaboration

θ₁₃: The Last Unknown Neutrino Mixing Angle

- What is v_e fraction of v_3 ?
- U_{e3} is the gateway to CP violation in neutrino (Mass)² sector: $P(v_{\mu} \rightarrow v_{e}) - P(\bar{v}_{\mu} \rightarrow \bar{v}_{e}) \propto \sin(2\theta_{12})\sin(2\theta_{23})\cos^{2}(\theta_{13})\sin(2\theta_{13})\sin\delta$ v_{2}

Measuring θ_{13} Using Reactor Anti-neutrinos

Previous best experimental limit from Chooz: $\sin^2(2\theta_{13}) < 0.17 (\Delta m_{31}^2 = 2.5 \times 10^{-3} \text{ eV}, 90\% \text{ c.f.})$

Build an experiment with sensitivity of ≤ 0.01 in $\sin^2(2\theta_{13})$

- Increase statistics: Use powerful reactors & large target mass
- Suppress background:
 - Go deeper underground
 - High performance veto detector to MEASURE the background

Reduce systematic uncertainties:

- Reactor-related: Utilize near and far detectors to minimize reactor-related errors
- Detector-related:
 - Use "Identical" pairs of detectors to do relative measurement
 - Comprehensive program in calibration/monitoring of detectors

幻灯片 5

VV1 Vit Vorobel, 2007-6-19

Detection of \overline{v}_{e}

Inverse β-decay in Gd-doped liquid scintillator:

 $\begin{vmatrix} \rightarrow + p \rightarrow D + \gamma(2.2 \text{ MeV}) & (t \sim 180 \,\mu \text{ s}) & 0.3\text{b} \\ \rightarrow + \text{Gd} \rightarrow \text{Gd}^* \rightarrow \text{Gd} + \gamma' \text{s}(8 \text{ MeV}) & (t \sim 30 \,\mu \text{ s}) & 50,000\text{b} \end{vmatrix}$

Time, space and energy-tagged signal \Rightarrow suppress background events.

$$E_{\overline{\nu}} \approx T_{e+} + T_n + (m_n - m_p) + m_{e+} \approx T_{e+} + 1.8 \text{ MeV}$$

Antineutrino Detector

Cylindrical 3-Zone Structure separated by acrylic vessels:

I. Target: 0.1% Gd-loaded liquid scintillator,

diameter=height= 3.1 m, 20 ton

II. γ-catcher: liquid scintillator, 42.5 cm thick

III. Buffer shielding: mineral oil, **48.8 cm thick**

With 192 PMT's on circumference and reflective reflectors on top and bottom:

$$\frac{\sigma}{E} \sim \frac{12.2\%}{\sqrt{E(\text{MeV})}}, \ \sigma_{\text{vertex}} = 13 \text{cm}$$

Inverse-beta Signals

Antineutrino Interaction Rate
(events/day per 20 ton module)Daya Bay near site960Ling Ao near site760Far site90

Prompt Energy Signal

$$\begin{split} & E_{e^+}(\text{``prompt''}) \in [1,8] \text{ MeV} \\ & E_{n\text{-}cap} (\text{``delayed''}) \in [6,10] \text{ MeV} \\ & t_{delayed}\text{-}t_{prompt} \in [0.3,200] \text{ } \mu\text{s} \end{split}$$

Delayed Energy Signal

MC statistics corresponds to a data taking with a single module at far site in 3 years. 10^{10}

Muon "Veto" System

Surround detectors with at least 2.5m of water, which shields the external radioactivity and cosmogenic background

■Water shield is divided into two optically separated regions (with reflective divider, 8" PMTs mounted at the zone boundaries), which serves as two active and independent muon tagger

Augmented with a top muon tracker: RPCs

■ Combined efficiency of tracker > 99.5% with error measured to better than 0.25%

Backgrounds

Background = "prompt"+"delayed" signals that fake inverse-beta events Three main contributors, **all can be measured:**

Background type	Experimental Handle
Muon-induced fast neutrons (prompt recoil,	>99.5% parent "water" muons tagged
delayed capture) from water or rock	~1/3 parent "rock" muons tagged
⁹ Li/ ⁸ He (T _{1/2} = 178 msec, β decay w/neutron	Tag parent "showing" muons
emission, delayed capture)	
Accidental prompt and delay coincidences	Single rates accurately measured

Background/Signal:

	DYB site	LA site	Far site
Fast n / signal	0.1%	0.1%	0.1%
⁹ Li- ⁸ He / signal	0.3%	0.2%	0.2%
Accidental/signal	<0.2%	<0.2%	<0.1%

Detector-related

Source of uncertainty		Chooz	Daya Bay (relative)		
		(absolute)	Baseline	Goal	Goal w/Swapping
# protons		0.8	0.3	0.1	0.006
Detector	Energy cuts	0.8	0.2	0.1	0.1
Efficiency	Position cuts	0.32	0.0	0.0	0.0
	Time cuts	0.4	0.1	0.03	0.03
	H/Gd ratio	1.0	0.1	0.1	0.0
	n multiplicity	0.5	0.05	0.05	0.05
	Trigger	0	0.01	0.01	0.01
	Live time	0	< 0.01	< 0.01	< 0.01
Total detector-related uncertainty		1.7%	0.38%	0.18%	0.12%

Baseline: currently achievable relative uncertainty without R&DGoal:expected relative uncertainty after R&DSwapping:can reduce relative uncertainty further

Reactor-related

Number of cores	σ_{ρ} (power)	$\sigma_{\rho}(\text{location})$	$\sigma_{\rho}(\text{total})$
4	0.035%	0.08%	0.087%
6	0.097%	0.08%	0.126%

Daya Bay Sensitivity

Source	Uncertainty
Reactor Power	0.087% (4 cores)
	0.13% (6 cores)
Detector (per module)	0.38% (baseline)
	0.18% (goal)
Signal Statistics	0.2%

Assume backgrounds are measured to<0.2%.

Use rate and spectral shape.

Input relative detector systematic error of 0.2%.

Milestones

Fall 07 Begin civil construction June 09 Start commissioning first two detectors

June 10 Begin data taking with near-far

3 year of data taking

Daya Bay: Status and Plan

•	Passed DOE scientific review	Oct 06
•	Passed US CD-1 review	Apr 07
•	Passed final nuclear safety review in China	Apr 07
•	Began to receive committed project funding for 3 years	
	from Chinese agencies	Apr 07
•	Start civil construction	Oct 07
•	Anticipate US CD-2/3a review	Oct 07
•	Start data taking with 2 detectors at Daya Bay near hall	May 09

• Begin data taking with 8 detectors in final configuration Apr 10

