Status of The Daya Bay Reactor Neutrino Experiment Neutrino Frontiers 2008, 10/23/2008

Mary Bishai (for the Daya Bay Collaboration)

mbishai@bnl.gov

Brookhaven National Lab.

Reactor $\bar{\nu}_e$ oscillations

$$P(\nu_e \to \nu_e) = 1 - \sin^2 2\theta_{13} \sin^2(1.27\Delta m_{31}^2 L/E) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2(1.27\Delta m_{21}^2 L/E)$$

Reactor ν_e disappearance = unambiguous measurement of $\sin^2 2\theta_{13}$

Getting to $\sin^2 2\theta_{13} < 0.01$

Current knowledge of $\sin^2 2\theta_{13}$: Global fit: $\sin^2 2\theta_{13} < 0.11$ (90% C.L.)

Lots of statistics: -Powerful nuclear reactors + more massive detectors Supress cosmic backgrounds: -Increase overburden = go deeper underground. **Reduce systematic uncertainties:** -Deploy near detectors as close as possible to reactor to minimize reactor flux uncertainties. -Use multiple, "identical" detector pairs to reduce near/far detector uncertainties.

-Calibration, calibration, calibration...

OVERVIEW OF THE DAYA BAY REACTOR EXPERIMENT

The Daya Bay Reactor Complex

Reactor Specs:

Located 55km north-east of Hong Kong.

Current: 2 cores at Daya Bay site + 2 cores at

Ling Ao site = 11.6 GW_{th}

By 2011: 2 more cores at Ling Ao II site = 17.4

 $GW_{th} \Rightarrow$ top five worldwide

1 GW $_{th}$ = $2 imes 10^{20} ar{
u_e}/ ext{second}$

Deploy multiple near and far detectors \Rightarrow

Reactor power uncertainties cancel to < 0.1%

The Daya Bay Collaboration

North America (14)(~73)

Political Map of the World, June 1999

w 7

BNL, Caltech, George Mason Univ., LBNL, Iowa State Univ., Illinois Inst. Tech., Princeton, RPI, UC-Berkeley, UCLA, Univ. of Houston, Univ. of Wisconsin, Virginia Tech., Univ. of Illinois-Urbana-Champaign Europe (3) (9)

JINR, Dubna, Russia Kurchatov Institute, Russia Charles University, Czech Republic

Asia (18) (~125)

IHEP, Beijing Normal Univ., Chengdu Univ. of Sci. and Tech., CGNPG, CIAE, Dongguan Polytech. Univ., Nanjing Univ., Nankai Univ., Shandong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Zhongshan Univ., Univ. of Hong Kong, Chinese Univ. of Hong Kong, National Taiwan Univ., National Chiao Tung Univ., National United Univ.

 \approx 207 collaborators

Anterctica

The Daya Bay Experiment Timeline

Oct 13, 2007: Ground breaking Aug. '08: DOE CD3b approval Winter '09: Daya Bay near hall physics ready Winter '10: Data taking with all detectors

The Daya Bay Detectors and Detector Systematics

Detecting $\bar{\nu_e}$ **using GD-loaded LS.**

The Anti Neutrino Detector

3 zone nested cylindrical structure with the following specifications:

Zone I:
20T GD-liquid scint.Zone II (γ catcher):
20T LSZone III (buffer):
40T mineral oil192 8" PMTS (Hamamatsu R5912)are mounted around the circumfer-
ence of the outer steel tankDiffuse reflectors on top and bot-
tom: (effective coverage 12%) $\sigma \sim \frac{12\%}{2}$

	DYB	LA	Far
Event rates/20T/day	840	740	90

$\bar{\nu_e}$ Detector Design Optimization

3 zone vs 2 zone \Rightarrow reduced systematic uncertainty in reconstructed energy cut:

n capture on Gd yields 8 MeV with 3-4 γ 's

Buffer oil shielding

		Buffer Oil Thickness (Rates in Hz)				
Isotope	Concentration	20 cm	25 cm	30 cm	40 cm	
²³⁸ U	100 ppb	5.5	4.0	2.8	1.5	
232 Th	150 ppb	3.8	2.6	2.3	1.1	
40 K	15 ppb	2.7	1.9	1.3	0.8	
Total		12	8.3	6.4	3.4	

γ catcher efficiency

The Prototype AD at IHEP

2-zone Prototype at IHEP

- 0.5 ton unloaded LS
- 45 8" PMTs with reflecting top and bottom

Background sources in the AD

γ ^γ ,	Using a modified the DYB mountain are: Overburden (m) Muon intensity Mean Energy (C	Gaisser n profile (Hz/m ²) GeV)	r para the DYB 98 1.16 55	amete cosm LA 112 0.73 60	rization nic ray Far 355 0.041 138	and rates
Source	Туре	Rate/20T	r modu l	le (DYB/	LA/FAR)	
Rock	U/Th/K $\gamma >$ 1 MeV	O(N	/IHz) w/	o shield	ing!	
SS vessel and welds	U/Th/K/Co		\sim 2	0 Hz		
PMT glass R5912	U/Th/k		\sim 1	2 Hz		
Cosmic muons	12 B/ 12 N eta only		396/2	267/28		
Cosmic muons	8 He/ 9 Li eta -n		3.7/2.	5/0.26		
Cosmic muons	fast neutrons (2 subevents)	dep	ends o	n shield	ing	
Cosmic muons	neutrons (1 subevent)	dep	ends o	n shield	ing	

Use a thick water shield to reduce neutron and rock γ bkgds

The He⁸/Li⁹ background

 He^{8}/Li^{9} generated by showers from cosmic muons in the AD LS:

Q= 13 MeV, au=178 msec \Rightarrow poor spatial correlation with μ track.

Computed rates (Hagner et. al.) events/module/day:

	DYB	LA	Far
$ar{ u_e}$ IBD	840	740	90
⁹ Li + ⁸ He	3.7	2.5	0.26

But it can be measured $! \rightarrow$

B/S pprox 0.3%

Fast Neutron Background

Fast neutron simulation results assuming active water shield with 99.5% muon tagging eff (events/day/20T module) :

		I: From untagged $oldsymbol{\mu}$	II:Rock neutrons	ll:Total/Signal
	DYB	0.10	0.5	$6 imes 10^{-4}$
	LA	0.07	0.35	$6 imes 10^{-4}$
Rout	Far	0.01	0.03	$4 imes 10^{-4}$
Daya Day				

The Water Shield and Muon Veto

Water pool: The $\bar{\nu_e}$ detectors are immersed in a water pool with 2.5m of water on all sides.

Inner muon veto: 1m in from the sides and bottom of the pool a single layer of 8" PMTs (1/8m²) acts as a water Cherenkov μ detector.

Outer muon veto: The outer 1m of the water pool is instrumented with 8" PMTs (1/6-7m²). Separated by Tyvek reflectors from inner veto. RPC system : On top of pool, 4 layers of resistive plate chambers (2.1m x 2.1m modules).

Muon Veto Details

Tyvek panels line outer wall and separate inner and outer veto regions. Near Hall layout (16x10x10m):

Muon Veto Efficiency Simulation

Kevin Zhang, BNL

Events in AD that occur within 200 μ s of a muon trigger are vetoed to suppress cosmogenic bkgds. Muon veto trigger:

1) > 12 PMTs fired in inner water shield OR 2) localized triggers in 8 sections of outer shield (8 PMTs fired/section) OR 3) 3/4 layers of RPC.

	Inner veto only	Inner + outer veto only	Water+RPC
Near	$97.62\pm0.2\%$	98.93 ± 0.12 %	99.54 ± 0.07 %
Far	$98.02 \pm 0.16\%$	99.22 ± 0.09 %	99.61 ± 0.07 %

Accidental background rates

Prompt: $\gamma >$ 1MeV from radioactivity \sim 40Hz/AD module with shielding Delayed:: 1) untagged single neutron capture 2) cosmogenic beta emmiters (6-10MeV, mostly 12 B/ 12 N) 3)U/Th \rightarrow O, Si ($\alpha, n, \gamma [6 - 10 \text{ MeV}]$)

	DYB	LA	Far
Signal rates	840/day	740/day	90/day
1) neutrons (singles)	18/day	12/day	1.5/day
2) eta s (singles)	210/day	141/day	14.6/day
3) $lpha,n\gamma$ (singles)	<10/day	<10/day	<10/day
Coinc bkgd rate	2.3/day	1.3/day	0.26/day
B/S	$\sim 3 imes 10^{-3}$	$\sim 2 imes 10^{-3}$	$\sim 3 imes 10^{-3}$

Calibration/Monitoring Systems

3 automated systems for calibration

at different RCalibration Forts-Gd-LS Gd-LS

Automated system deploys 2 different sources (β , n) + LED

Initial filling/commisioning Load cells and high precision mass flowmeters used during filling (accuracy < 0.1%). Calibration using a manual deployment system with sources/LED. <u>Routine monitoring:</u> Weekly/monthly <u>automatically deploys</u> sources and LEDs to monitor response in 3 zones. Supplement with spallation product (e.g. neutron) measurements.

Detector Deployment Strategy

To control H/C and H/Gd ratio uncertainties, detectors are filled and commisionned

in matched pairs, at least one of each pair stays at the near site and the other is

deployed at the far site.

Deploy matched pairs (same color) at near/far sites:

Detector systematics

Source of uncertainty		Chooz (absolute)	Daya Bay (<mark>relative</mark>)	Strategy
# protons	H/C ratio	0.8	< 0.1	Fill in pairs/calib
	Mass	-	< 0.3	Load cells and
				mass flowmeters
Detector	Energy cuts	0.8	0.2	lower threshold/calib
Efficiency	Position cuts	0.32	0.0	3-zone
	Time cuts	0.4	0.1	Common clock \sim 10ns
	H/Gd ratio	1.0	0.1	fill in pairs/calib
	n multiplicity	0.5	0.05	Deeper/muon veto
	Trigger	0	0.01	Redundant triggers
	Live time	0	< 0.01	Common GPS clock
Total detect	or-related uncertainty	1.7%	0.38%	

Sensitivities

Daya Bay Detectors in Production

-All AD prototyping activities completed (China/US)
-AD design for all subsystems completed (China/US)
-RPC modules are in production (China)
-AD PMT production testing in progress (China/US)
-Stainless steel vessel completed this mo (China)
-Acrylic vessels in fabrication(Taiwan/US)

BACKUP

Near/Far cancellation

Q: Near/far cancelation with multiple cores?

A: Deweight the oversampled cores by a factor, α , Ratio = $\alpha \frac{\text{Near1}}{\text{far}} + \frac{\text{Near2}}{\text{far}}$

$$\alpha = \frac{1/(L_{22}^2 L_{1f}^2) - 1/(L_{21}^2 L_{2f}^2)}{1/(L_{11}^2 L_{2f}^2) - 1/(L_{12}^2 L_{1f}^2)}$$

For Daya Bay 4 cores, $\alpha = 0.34 \Rightarrow$ factor 50 cancellation: 2% \rightarrow 0.035% For Daya Bay 6 cores, $\alpha = 0.39 \Rightarrow$ factor 20 cancellation: 2% \rightarrow 0.1%

Deweighting \Rightarrow cancellation of reactor power uncertainties to better than 0.1%

Cosmic Ray Rates

Most backgrounds in the AD are induced by cosmic muons:

-Using a modified Gaisser parametrization for cosmic-ray flux at surface

-Apply MUSIC and mountain profile to estimate muon intensity and energy

	DYB	LA	Far
Overburden (m)	98	112	355
Muon intensity (Hz/m ²)	1.16	0.73	0.041
Mean Energy (GeV)	55	60	138

Rock Radioactivity

Daya Bay granitic rock is very radioactive!

Measured U/Th/K \approx 10ppm/30ppm/5ppm in samples. Also measured the

spectrum from the Aberdeen tunnel in HK (same type of rock):

Low-E γ from radioactivity = x10 reduction for every 50 cm H2O.

2.5m water and 45cm mineral oil buffer \sim 3.5 Hz/20T module

Neutron Time Cuts

These cut times must be the same to ~10ns for all modules \rightarrow use common clock

 \rightarrow 0.05% contribution to neutron efficiency

Bob Mckeown