Daya Bay Neutrino Experiment Jun Cao Institute of High Energy Physics, Beijing

3rd International Conference on Flavor Physics, Oct. 3-8, 2005 National Central University Chung-li, Taiwan

Neutrino Oscillation

Neutrino Mixing: PMNS Matrix

Known: $|\Delta m_{32}^2|$, $\sin^2 2\theta_{23}$, Δm_{21}^2 , $\sin^2 2\theta_{12}$

Unkown: $\sin^2 2\theta_{13}$, δ_{CP} , Sign of Δm^2_{32}

J. Cao (IHEP)

Reactor Neutrino

Physics Goal

Beta beam \rightarrow 1e-4 ?

Reactor Neutrino:

- Fast, Cheap, and Clean!
- Mature technique, Chooz, Palo Verde, KamLAND
- but challenging on controlling systematics.

The proposed **Daya Bay Experiment** will measure $\sin^2 2\theta_{13}$ to 0.01 or better at 90% C.L. in a three-year run (2001).

And a direct measurement of Δm^2_{31}

Location of Daya Bay

5

Tunnel Layout

Far: 80 ton 1600m to LA, 1900m to DYB Overburden: 350m Muon rate: 0.04Hz/m²

LA: 40 ton Baseline: 500m Overburden: 98m Muon rate: 0.9Hz/m²

0% slope

Mid: Baseline: ~1000m Overburden: 208m

0% slope

LingAo

LingAo cores

DyB: 40 ton Baseline: 360m Overburden: 97m Muon rate: 1.2Hz/m² Total Tunnel length ~ 3200 m Detector swapping cancels most detector systematic error. Residual error ~ 0.2% Backgrounds B/S of DYB,LA ~ 0.5% B/S of Far ~ 0.2% Site Survey Topography: Completed Geological Survey: Completed Geological Physical Survey: Completed Bore-Hole Drilling: Oct.~Dec.

Approved by Power Plant

Horizontal tunnel

J. Cao (IHEP)

8% slope

Muon Simulation

MUSIC simulation

	DYB	LA	Mid	Far
Elevation (m)	97	98	208	347
Flux (Hz/m ²)	1.2	0.94	0.17	0.045
Mean Energy (GeV)	55	55	97	136

LingAo II

2100

2200

2000

8

J. Cao (IHEP)

A Versatile Site

Fast measurement:

One near site + mid site Sensitivity ~ 0.03 in a one year run 40 ton/site, reactor error 0.7%

J. Cao (IHEP)

Full operation: (Goal)

- Two near sites + Far site $(\sin^2 2\theta_{13} < 0.01)$
- Mid site + Far site $(\sin^2 2\theta_{13} \sim 0.01)$
- Two near sites + Mid site + Far site $(\sin^2 2\theta_{13} < 0.01)$

Different systematics

Detector

Vertical, cylindrical modules

- Easy to fabricate
- Easy to calibrate
- Size limited by tunnel cross section
- Multiple modules to control systematics and gain enough statistics.

Three-layer structure:

- I. target: Gd-loaded scintillator, 20 ton
- II. gamma catcher: normal scintillator, 45cm
- III. Buffer shielding: mineral oil, ~45cm

Possibly with reflection on top and bottom

~200 8"PMTs mounted in oil

 $\frac{\sigma}{E} \sim \frac{14\%}{\sqrt{E(\text{MeV})}}, \ \sigma_{\text{vertex}} = 14\text{cm}$

J. Cao (IHEP)

Veto

11

- **2m+ water shielding** (neutron produced in rock and gammas)
- Water cherenkov detector
- Another muon veto (plastic scintillator or RPC) outside the water shielding.
 > 99.5% efficiency.

J. Cao (IHEP)

Background

	Near Site	Far Site
Radioactivity (Hz)	<50	<50
Accidentals B/S	<0.05%	<0.05%
Fast Neutron backgrounds B/S	0.15%	0.1%
⁸ He/ ⁹ Li B/S	0.55%	0.25%

Radioactivity: PMT glass, Rock, Radon in the air, etc

Neutron Singles and Fast neutron backgrounds

✓ Neutrons produced in rock and water shielding (99.5% veto efficiencey)

Cosmogenic isotopes ⁸He/⁹Li

- ✓ Cross section measured at CERN (Hagner et. al.)
- \checkmark Can be measured in-situ, even for near detector with muon rate ~ 10 Hz.
- \checkmark The above number is before shower muon cut.

Systematics

Systematic errors	Chooz	Daya Bay
Reaction Cross Section	1.9%	0, near-far cancellation
Energy released per fission	0.6%	0, near-far cancellation
Reactor Power	0.7%	0.06%, near-far cancellation
Number of Protons	0.8%	0, detector swapping
Detection efficiency	1.5%	~0.2%, fewer cuts, detector swapping
Total	2.75%	~0.2%

No Vertex cut.

Residual detection error is dominated by the **neutron energy cut** at 6 MeV, arises mainly from energy scale uncertainties. It is ~0.2%, suppose 1% energy scale error at 6 MeV.

Positron energy cut negligible.

Residual systematic error: ~ 0.2%			
Statistical Error (3 ye	ears): 0.2%		
Backgrounds:	B/S ~ 0.6%		

Sensitivity

- DYB detector
 - ✓ baseline 360m
 - ✓ 40 ton
 - ✓ B/S ~0.5%
- LA detector
 - ✓ baseline 500m
 - ✓ 40 ton
 - ✓ B/S ~0.5%
- Far detector
 - ✓ 1900m to DYB cores
 - ✓ 1600m to LA cores
 - ✓ 80 ton
 - ✓ B/S ~0.2%
- Three-year run (2009-2011)
 - \checkmark 0.2% statistical error
- Detector residual error 0.2%

90% confidence level

14

IHEP Detector Prototype

2-layer cylindric detector, 0.5 ton Gd-doped LS surrounded by 5 ton oil, 45 PMTs. Mounting PMT now.

J. Cao (IHEP)

Daya Bay Neutrino Experiment

Aberdeen Tunnel Exp.

- Hong Kong University & Chinese University of Hong Kong. Started in Jun. 2005
- ~ 240m Overburden
- **T** o study cosmic muon, neutron production, possibly cosmogenic isotopes.

Similar rock as Daya Bay

J. Cao (IHEP)

Daya Bay Neutrino Experiment

16

Geological Survey

- Topography Survey, done
- Geological Survey, done
- **Geological Physical Survey, done**
 - **#** High Resolution electric resistance

Orientation Statistics of Joints

- **#** seismic reflection
- Bore hole drilling, Oct.~Dec.

