Daya Bay Neutrino Experiment Jun Cao Institute of High Energy Physics, Beijing

NUFACT05

7th International Workshop on Neutrino Factories and Superbeams Laboratori Nazionali di Frascati, Frascati (Rome) June 21 - 26, 2005

Physics Goal

Neutrino Mixing: PMNS Matrix

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & e^{-i\delta} \sin \theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta} \sin \theta_{13} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{array}{c} \text{Atmospheric} & \text{Reactor and LBL} & \text{Solar} \end{array}$$

■ Value of measuring $\sin^2 2 \theta_{13}$ to 0.01 using reactor antineutrino has been well documented: Clean, Fast, and Cheap!

 $P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 (1.27 \Delta m_{13}^2 L/E) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 (1.27 \Delta m_{12}^2 L/E)$

The Daya Bay Experiment will measure $\sin^2 2\theta_{13}$ to 0.01 or better at 90% C.L. in a three-year run (2001).

Location of Daya Bay

3

Tunnel Design

Reactor Error

- **\blacksquare** Reactor correlated error ~2%, uncorrelated error ~2%
- Correlated error will cancel out with near/far measurement.
- Uncorrelated error may cancel out for 1 or 2 core reactor, if choose the detector sites carefully.
- Daya Bay has 4 cores currently, another 2 cores will start in 2010. The layout is irregular. Uncorrelated error will partially cancel out.
- **H** Near (500m)/Far(2000m), residual error ~ 0.06% (6 cores and 4 cores)
- **H** Near (300m)/Far(2000m), residual error ~ 0.12%
- $\blacksquare Mid(1000m)/Far(2000m), residual error ~ 0.16\%$
- In A fast measurement with a single near site: DYB(500m) + Mid(1000m), residual error ~ 0.7%

A Versatile Site

Fast measurement:

One near site + mid site Sensitivity ~ 0.03 in a one year run 40 ton/site, reactor error 0.7%

J. Cao (IHEP)

Full operation: (Goal)

- Two near sites + Far site ($\sin^2 2 \theta_{13} < 0.01$)
- Mid site + Far site (sin²2 $\theta_{13} \sim 0.01$)
- Two near sites + Mid site + Far site $(\sin^2 2 \theta_{13} < 0.01)$

Different systematics

Muon Simulation

MUSIC simulation

	DYB	LA	Mid	Far
Elevation (m)	116	115	208	437
Flux (Hz/m ²)	0.77	0.77	0.17	0.025
Mean Energy (GeV)	60	58	97	154

Modified Gaisser formula (low E, high θ) Flux -10%, Mean energy unchanged.

LingAo II

2100

2200

Rock density 2.6 g/cm^{3}

J. Cao (IHEP)

Daya Bay Neutrino Experiment

Detector Design (I)

Option I: Vertical, cylindrical modules

- Easier to fabricate
- Easier to calibrate
- Size limited by tunnel cross section
- Multiple modules to control systematics and gain enough statistics.

Three-layer structure:

- I. target: Gd-loaded scintillator
- II. gamma catcher: normal scintillator
- III. Buffer shielding: oil

Reflection on top and bottom

~20t each, ~200 8"PMT/module

$$\frac{\sigma}{E} \sim \frac{14\%}{\sqrt{E(\text{MeV})}}, \ \sigma_{\text{vertex}} = 14\text{cm}$$

Detector Design (II)

Option II: Horizontal, cylindrical modules

- PMTs mounted on outside with window for servicing
- large fiducial volume per module
- fit to tunnel cross section

12% PMT coverage:

$$\frac{\sigma}{E} \sim \frac{7\%}{\sqrt{E(\text{MeV})}}$$

Veto (I)

Option I: Shielding Bath

Muon chambers or scin. bar at top and Immediate vicinity of detector.

- Muon chambers surround detector in "tunnel".
- Cover ends with H₂0 plug
- Access to opposite end over top.

Top View of the Experimental Hall

11

J. Cao (IHEP)

Veto (II)

12

Option II: Water House

consists of 2m×2m water Cherenkov tanks.

2-layer RPC tracking outside the water tank.

Expected muon efficiency 95% water cerenkov 90% RPC Combined 99.5%

J. Cao (IHEP)

Common in Options

- Movable detector
- Three-layer cylindrical detector
- Gamma-catcher ~ 45cm
- Oil buffer ~ 45cm
- **#** Passive water shielding $\geq 2m$
- Water Cherenkov + another muon veto (RPC, muon chamber, or plastic scintillation bar) > 99% efficiency

Based on full Monte Carlo studies

Detector Monte Carlo

- **GEANT3 + GCALOR**
- **#** Optical photon transportation + Digitization
- **Event reconstruction**

OE/E

delta E (cn)

y spectrum of n(Gd)
capture

Daya Bay Neutrino Experiment

14

Positron Efficiency

Chooz 1.3MeV, error 0.8% (bad LS)

KamLAND 2.6MeV, error 0.26%

Positron Efficiency 99.6% Error ~0.05% (Assuming 2% energy scale error)

J. Cao (IHEP)

Daya Bay Neutrino Experiment

Gamma Catcher

CHOOZ 5 ton detector with 70cm gamma catcher, efficiency (94.6±0.4)% (vertex cut and larger edge effects for smaller detector) MC reproduced CHOOZ efficiency -> correct gamma spectrum

⁸He/⁹Li Backgrounds

Cosmogenic long-lived isotopes, can not be rejected by muon veto, can not be shut out with passive shielding. Dominant background.

- ⁸He half-life 0.12s, ⁹Li half-life 0.18s
- 16% ⁸He and 49.5% ⁹Li decay with beta-neutron cascade
- Cross section @190GeV σ (⁸He+⁹Li)=2.12±0.35 µ barn (Hagner et. al.)
- Extrapolate according to power law $\sigma(E_{\mu}) \propto E_{\mu}^{0.73}$
- KamLAND found ~85% isotopes produced by shower muons and the contribution of ⁸He relative to ⁹Li is less than 15%
- ⁸He can be tagged by double cascade ⁸He->⁸Li->⁸Be (D-chooz)
- Can We measure ⁹Li in-situ, as KamLAND did?
 - Far detector muon rate ~ 0.25Hz (0.025 Hz/m², 10 m²)
 - Mid detector ~ 2Hz
 - Near detector ~ 8Hz

Measuring ⁹Li in-situ

⁹Li can be measured in-situ even if muon rate is high.

Neutrino rate and ⁹Li rate is much lower than muon rate. Each neutrino-like event (and the adjacent-in-time muons) can be viewed as independent (no entanglement)

$$ML : \log L = \sum_{i} \log \left[B \cdot e^{-t_i/\lambda} / \lambda + (1-B) \cdot e^{-t_i/T} / T \right]$$
$$1/\lambda = 1/\tau + 1/T, \quad T = 1/R_{\mu}$$

Or a better ML with timing of several precedent muons. Variance estimation for ML:

If B<<
$$\tau/(\tau+T)$$
, then $\sigma_{est} = \frac{1}{\sqrt{N}}\sqrt{(1+\tau R_{\mu})^2 - 1}$

N: total neutrino-like events, τ : lifetime of ⁹Li, R_µ: muon rate.

DYB Near site: 60% resolution DYB Far site: 30% resolution

J. Cao (IHEP)

Neutron Backgrounds

Full MC simulation

- Muons from MUSIC simulation.
- Neutron produced by muons in water and rock
- Neutron yield, energy spectrum, and angular distribution. Accurate to 10~20%

Y. Wang et al., PRD64, 013012(2001)

- Event selection (E cut and \triangle T cut):
 - Single neutrons
 - Fast neutron backgrounds
 - Energy spectrum of fast neutron backgrounds

J. Cao (IHEP)

Neutron Backgrounds

		Near Site (events/day)	Far Site (events/day)
Single Neutrons	Pass Veto det	975.3	59.2
	Not Pass Veto det	19.4	1.33
Fast NeutronPassBackgroundsNot Pass	Pass Veto det	41.3	2.4
	Not Pass Veto det	0.59	0.05

Two veto detectors with efficiency 99.5%, then

Background = (Not Pass Veto det) + 0.5% (Pass Veto det)

Fast Neutron backgrounds Near Site B/S ~ 0.15% Far Site B/S ~ 0.1%

Radioactivity

21

MC + Reconstruction, 45 cm oil buffer

- PMT glass (low radioactivity, U: 50ppb Th: 50ppb K: 10ppb)
 Total rate ~ 7 Hz (>1 MeV)
- Daya Bay Rock (U: 8.8ppm Th: 28.7ppm K: 4.5ppm)
 Detector shielded by oil buffer and 2m water
 Total rate ~ 8 Hz (>1 MeV)
- **#** Radon is a little bothersome. It will be controlled by ventilation.
- **#** Requirement: total radioactivity < 50 Hz

Since single neutron flux is low, radioactivity is not a problem.

Background Summary

	Near Site	Far Site
Radioactivity (Hz)	<50	<50
Accidentals B/S	<0.05%	<0.05%
Fast Neutron backgrounds B/S	0.15%	0.1%
⁸ He/ ⁹ Li B/S	0.55%	0.25%

In sensitivity analysis, we assume that all backgrounds carry 100% error.

- **Detector systematic error no longer important for Daya Bay.**
- With detector swapping, detector normalization error cancel out, even if we don't know its size.
- Energy scale may change before and after swapping. The normalization error can be controlled to be <0.2% by calibration system. (corresponding to 1% energy scale error @ 6MeV.)

Side-by-side calibration will

- Understand the detector systematic error
- "Measure" systematic error relatively, depends on statistics (thus we only care about statistical error, not systematic errors.
- monitor detector swapping

Sensitivity

- Near/Far configuration
- Three-year run (0.2% statistical error)
- Two near sites, 40 ton each
- 80 ton at Far site
- Detector residual error 0.2%
- Far site background error 0.2%
- Near site background error 0.5%

Detector Prototype

To test LS, energy reconstruction, calibration, reflection, electronics, ...

- Inner acrylic vessel: 1m in diameter and 1m tall, filled with Gd doped liquid scintillator.
- Outer stainless steel vessel: 2m in diameter and 2m tall, filled with mineral oil. PMTs mount in oil.
- Plastic scintillator muon veto

Detector Prototype

Geological Survey

Geological survey started earlier in this monthBorehole drilling will start in July

Borehole drilling:

4 sites +

1 fault

Timeline

Sep. 2005	completed geological survey
2006	begin civil construction
Early 2007	complete tunnels and underground laboratories for Daya Bay near site
2007	construction of tunnels for mid- and far site
2008	complete tunnels and experimental halls
2008/2009	begin data taking with all facilities operational

Thanks!

Spectrum of Backgrounds

8

 $\mathbf{E}_{\mathtt{vis}}$

9

(MeV)

10

(c)

- Beta energy spectrum of ⁸He/⁹Li is known.
- Accidentals can be measured
- Spectrum of fast neutron backgrounds can be estimated using tagged muons (statistics is 50 times larger than backgrounds)
- The spectrum error of backgrounds are not important in shape analysis, comparing with statistical error of neutrinos.

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

(d)

Arbitary Units

Shape analysis

How swapping improves sensitivity

- **±** Example: one reactor, one near detector, one far detector.
- Swapping can't improve backgrounds, not shown here.In Run A, det 1 at the near site and det 2 at the far site. In Run B swap detectors.

$$\chi^{2} = \frac{\left[O_{1}^{A} - T_{n}(1 + \alpha_{det}^{1} + \alpha_{r}^{A})\right]^{2}}{T_{n}} + \frac{\left[O_{2}^{A} - T_{f}(1 + \alpha_{det}^{2} + \alpha_{r}^{A})\right]^{2}}{T_{f}} + \frac{\left[O_{2}^{B} - T_{n}(1 + \alpha_{det}^{2} + \alpha_{r}^{B})\right]^{2}}{T_{n}} + \frac{\left[O_{1}^{B} - T_{f}(1 + \alpha_{det}^{1} + \alpha_{r}^{B})\right]^{2}}{T_{f}} + \left(\frac{\alpha_{det}^{1}}{\sigma_{det}}\right)^{2} + \left(\frac{\alpha_{det}^{A}}{\sigma_{r}}\right)^{2} + \left(\frac{\alpha_{r}^{A}}{\sigma_{r}}\right)^{2} + \left(\frac{\alpha_{r}^{B}}{\sigma_{r}}\right)^{2} + \left(\frac{\alpha_{r}^{B}}{\sigma_{r}}\right$$

I If run A has equal events to run B, equivalently, it can be written as

$$\chi^{2} = \frac{\left[2O_{n} - 2T_{n}\left(1 + \frac{\alpha_{det}^{1} + \alpha_{det}^{2}}{2} + \frac{\alpha_{r}^{A} + \alpha_{r}^{B}}{2}\right)\right]^{2}}{2T_{n}} + \frac{\left[2O_{f} - 2T_{f}\left(1 + \frac{\alpha_{det}^{1} + \alpha_{det}^{2}}{2} + \frac{\alpha_{r}^{A} + \alpha_{r}^{B}}{2}\right)\right]^{2}}{2T_{f}} + \left(\frac{\alpha_{det}^{1}}{\sigma_{det}}\right)^{2} + \dots$$

Now $(\alpha_{det}^{1} + \alpha_{det}^{2})$ is correlated between the near and far detectors. That is to say, detector normalization error all cancel out, even we don't know its size.

Daya Bay Neutrino Experiment

32