

Daya Bay Reactor Neutrino Experiment

On behalf of the DayaBay collaboration

Virginia Polytechnic Institute and State University

Joseph ykHor

Table of Content

Physics Goal

Relative measurement & disappearance probability

Baseline & detector design

Sensitivity

Current status, schedule and dates

Background and energy cut

Physics Goal

Physics Goal

Determine θ_{13} better than any past experiments

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{CP}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha/2} & 0 \\ 0 & 0 & e^{i\alpha/2+i\beta} \end{pmatrix}$$

$$\theta_{23} \sim 45^{\rm o}$$
 $\theta_{12} \sim 35^{\rm o}$ Super K + Accelerator $\theta_{13} \sim 35^{\rm o}$ KamLand + Solar + atmospheric CP-phase + small $\theta_{13} \sim 35^{\rm o}$ CP-phase + small $\theta_{13} \sim 35^{\rm o}$

PMNS Matrix Parameterization: $\nu_{\alpha} = \sum_{i=1}^{3} U_{\alpha,i} \nu_{i}$

Double Chooz

Neutrinoless double beta decay

Relative measurement & disappearance probability

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v} \right)$$

·near detectors

measure v_e flux and spectrum to reduce reactor-related systematic uncertainties

 far detector at the oscillation maximum provides the highest sensitivity

Relative measurement & disappearance probability

$$\frac{N_{\rm f}}{N_{\rm n}} = \left(\frac{N_{\rm p,f}}{N_{\rm p,n}}\right) \left(\frac{L_{\rm n}}{L_{\rm f}}\right)^2 \left(\frac{\epsilon_{\rm f}}{\epsilon_{\rm n}}\right) \left[\frac{P_{\rm sur}(E,L_{\rm f})}{P_{\rm sur}(E,L_{\rm n})}\right]$$

Ratio of measured event rate from far and near site detectors

Ratio of number of protons in Gd-LS. Obtained by mass flow measurements

Ratio of the detector efficiency Obtained by calibration

Probability ratio determine $\sin^2(2\theta_{13})$

distance L ~ 1.8 km

- currently running at 11.6 GW
- one of the top five most powerful by 2011 (17.4 GW)
- Adjacent to mountain, easy to construct tunnels to reach underground labs with sufficient overburden to suppress cosmic rays

Deep down the mountain to suppress cosmogenic background

Deploy identical detectors in all sites to isolate systematic uncertainties

Optimize baseline distance for disappearance oscillation

Antineutrino Detector(AD)

Automatic calibration system

Top and bottom reflectors

192 8" PMTs

Three-zone design:
Gd-doped LS, 20 tons
Inner acrylic vessel

LS as Gamma Catcher, 20 tons Outer acrylic vessel

Mineral oil as buffer, 40 tons Stainless steel tank

Muon tagging Shielding of background radiation RPC as muon veto on top of water Cherenkov

Sensitivity

 $\sin^2 2\theta_{13} < 0.008 @ 90\% CL$ after 3 years of data taking

Sensitivity

Sensitivity Comparison

P. Huber, M. Lindner, T. Schwetz, W. Winter, arXiv:0907.1896.

Current status, schedule and dates

- CD-0 (DOE Mission Need): 11/2005
- · Daya Bay proposed at OHEP Briefing 4/2006
- Successful Physics Review 10/16/06
- · CD-1 site selection approved 9/2007
- · Groundbreaking for civil construction 10/2007
- · CD-2 & 3a Baseline approved 3/2008
- CD-3b Construction start 8/2008
- Occupancy of SAB 3/2009
- · Occupancy of first underground halls, 2009
- · Expected start of first operations, 2010
- Full operations start, 2011

Current status, schedule and dates

YuenKeung, Hor

Virginia Tech.

Daya Bay collaboration APS SouthEast meeting 2009

Current status, schedule and dates

Summary

DayaBay experiment is the most sensitive θ_{13} experiment under construction

Specifically designed to achieve the sensitivity of sin^2 ($2\theta_{13}$) down to 0.01(goal) at 90% C.L. and 0.008(projected) in three years of data taking

It is now on track to take initial data in the next year and become fully operational in 2 years

The End Thank You

Back up

Source of uncertainty		Chooz	Daya Bay (relative)		
		(absolute)	Baseline	Goal	Goal w/Swapping
# protons		0.8	0.3	0.1	0.006
Detector	Energy cuts	0.8	0.2	0.1	0.1
Efficiency	Position cuts	0.32	0.0	0.0	0.0
	Time cuts	0.4	0.1	0.03	0.03
	H/Gd ratio	1.0	0.1	0.1	0.0
	n multiplicity	0.5	0.05	0.05	0.05
	Trigger	0	0.01	0.01	0.01
	Live time	0	< 0.01	< 0.01	< 0.01
Total detector-related uncertainty		1.7%	0.38%	0.18%	0.12%

Back up

	Daya Bay Near	Ling Ao Near	Far Hall
Radioactivity (Hz)	< 50	< 50	< 50
Muon rate / AD (Hz)	36	22	1.2
$\bar{\nu}_e$ -Signal (events/day)	840	760	90
Accidental B/S (%)	< 0.2	< 0.2	< 0.1
Fast neutron B/S (%)	0.1	0.1	0.1
⁸ He+ ⁹ Li B/S (%)	0.3	0.2	0.2

Accidental coincidence: **Correlated events:**

natural radioactivity neutrons from cosmic muons Fast neutron capture + recoil proton

Beta + neutron decay from Helium & Lithium

Back up

Prompt Energy Signal

Delayed Energy Signal

$$\begin{array}{c|c}
\hline
v_e + p \rightarrow e^+ + n & (prompt) \\
\hline
0.3b \\
\rightarrow + p \rightarrow D + \gamma(2.2 \text{ MeV}) & (delayed) & two \\
\hline
50,000b \\
\rightarrow + Gd \rightarrow Gd^* \rightarrow Gd + \gamma's(8 \text{ MeV}) & (delayed)
\end{array}$$

Energy spectrum of two processes in inverse-beta decay